

DAMBAT IS A DYNAMICALLY DEVELOPING POLISH MANUFACTURER OF WATER PUMPS AND FITTINGS SOLD UNDER IBO BRAND.

The company started its activities in 1999 and from the very beginning it based its development on understanding clients' needs providing them with high quality products. With experience and knowledge of qualified personnel and regular product development, Dambat became a significant manufacturer of water pumps in the European market.

In order to continue constant development, we cooperate with world-renowned manufacturers of water devices and equipment, while making our offer more attractive. In 2015 and 2016 we commenced cooperation with Italian factories, which resulted in introduction of a new IBO Italy brand into the market. In cooperation with our Italian partners, we sell top quality tanks, pumps and deep well motors under this brand. Benefiting from the latest technology and high-quality materials, IBO and IBO ITALY products ensure long-lasting, safe and faultless operation. The range of products with such features and individual approach enabled us to acquire distributors of our devices in the majority of European countries and beyond.

With the experience gained over the years in line with knowledge and understanding of the importance of reliability, Dambat delivers top quality products to all customers who decide to choose our offer.

IBO BRAND PRODUCER & OWNER:

PHU DAMBAT **TEL.:** + 48 22 721 11 92 **FAX.:** + 48 22 721 02 17 **E-MAIL:** biuro@dambat.pl

www.dambat.pl

TABLE OF CONTENTS:

About us							•	•		•	•	•	•	•	•	•		. :	2
Table of contents.																	 3 -	- 4	4

SURFACE PUMPS

J 50/60	. 6
J 45/75	. 7
/ZI	. 8
B 60/80	. 8
Τ 100Α	. 9
ET 100 LONG	. 9
5W	10
Ρ	11
l 65/45	12
ARDEN	12
IULTI 1300 INOX	13
IULTI - GARDEN	13
HI	14
Η	15
J 40/55	16
VH2-03	17
P INOX	18

SWIMMING POOL PUMPS

SWIM	20
JA 50	21
FON	22

BOOSTER SETS	
HYDROPHORES	

INVERTERS

AUTOIBO	D
HOME 1	1
INVERTER SYSTEM - IVR02	2
INVERTER SYSTEM - IVR-10	4
INVERTER SYSTEM - IVR09T 30	5
MULTI SET - IVR02	3
MULTI SET - IVR09/11	9

MANIFOLDS

2-PUMP DELIVERY SIDE MANIFOLD
2-PUMP SUCTION SIDE MANIFOLD
SUCTION SIDE MANIFOLD FOR 3-PUMP SETS
DELIVERY SIDE MANIFOLD FOR 2-PUMP SETS
DELIVERY SIDE MANIFOLD FOR 3-PUMP GROUP
PUMP GROUP BASE PLATE

INDUSTRIAL PUMPS

CPM INOX
F- CPM / PMC INOX
MCI
VMH
CV, CVF, CVL
COLP

SUBMERSIBLE PUMPS

IP/IP INOX	 	82
IPE/IPK	 	83
IPC550	 	84
NEMO/ VM60	 	85
MULTI IP 800 INOX	 	86
MULTI IP AUTO	 	86
MULTI IP INOX 1200/1200 .	 	87
H-SWQ	 	88
SWQ	 	89
F-SWQ	 	89
WQX	 	90
MAGNUM	 	91
WQF	 	92
SN-450	 	93
SWQ SEPTIC	 	94
BIG	 	95
SWQ 1500 PRO	 	96
WQ 1500 PRO	 	97
WQ PROFESSIONAL	 	98

PUMPS WITH CUTTING SYSTEM

CTR
FURITATKA
V
SWQ
WQI
KRAKEN
KRAKEN 1800
KRAKEN 1800 DF
UP 60/80
UP-H
ZWQ110-111
MWQ
GUIDE RAIL SYSTEM
KBFU
AREAT

DEEP WELL PUMPS

2" STING
3" SQIBO / 3"SCR / 3,5"SCR
GSK 4-16 / GSK 6-16
3" SKM / 4"SKM
OLA INOX / OLA AUTO
2,5" STM
3″TI
3" SDM
3" STM
3" ISPM
3,5" SCM / 3,5" SC
3,5" SDM
4"SD / 4"SDM
4" ISP / 4" ISPM 137 - 139
3" IBQ / 4"IBQ 140 - 144
5" SD
6" SD
6" ISP

ITALIAN DEEP WELL PUMPS

52
53
54
55
56
57
58
59
50
51
52
53
54
55
56
57
58
59
59
70
70
71
72
72
72 73

DEEP WELL MOTORS	
SILNIKI IBO 3"/4"/6"	
4"IOM ITALY	
6"IOM ITALY	
6"IMW ITALY	
8"IMW ITALY	
10"IMW ITALY	

M TANKS	
•	sure tanks
	tal pressure tanks with pressure gauge
	NOX) horizontal pressure tanks
	s
	embrane tanks
	Pressure vessels
	embrane pressure vessels
	ressure vessels

CIRCULATING PUMPS

MAGI
MAGI MAX
MAGI-H
NOVA
BETA 2
OHI PRO
OHI PRO MAX
BETA ECO
OHI / OHI PLUS+
OHI MAX
STEROWNIK S-100
STEROWNIK S-130
NOVA-PG FOR GAS BOILERS
W15-IH10
BETA BR / OHI BR CIRCULATING PUMPS
CPI 15-15
E-IBO 15-14
IPML

SPECIAL PUMPS

PR–50								 . 2	13
PR – AUTO								 . 2	14
OIL PUMPS / AOP SETS								 . 2	15
PRO/PRN								 . 2	16
BZP/H-BZP								 . 2	17
GREEN / DECORATIVE ABYSSINIAN PUMP	۰.							 . 2	18
SBAW - FOOD GRADE PUMPS								 . 2	19

SANITARY PUMPS

CONIBO / CONAQ AQUASAN MINI																			
SANIBO MINI	 	•	•		•				•			•	•	•		•	 	. 22	23
AQUASAN PRO SANIBO1																			
SANIBO4																			

CONTROLLERS / PROTECTIONS

M121 / M131
IBOPRESS 10
DIG-IBO / HYDRO BLOCK
AUTOMATIC PUMP CONTROLLERS
PRESSURE SWITCHES
ASSEMBLY ADHESIVE FOR FITTINGS 235
FLOAT SWITCHES MEMBRANES 235
FLANGES
FAST CONNECTIONS / COUPLINGS
CONTROL BOXES
FILTERS - HOUSINGS / CARTRIDGES
SAND FILTERS
UV STERILIZERS 238

WELL PRODUCT RANGE

CABLE CONNECTION
WELL ROPE
WELL TOP COVERS
WELL COUPLING
CENTRALIZER
PRESSURE REGULATORS
NON-RETURN VALVES
CENTRAL HEATING VALVES / OUTLETS
PRESSURE GAUGES
ELECTRICAL CABLES 244
ANTI-VIBRATION HOSES/CONNECTORS 245
SUCTION HOSES - REINFORCED
SUCTION HOSES - HELIX
DISCHARGE HOSES
SWIMMING POOL HOSES 249
USEFUL INFORMATION
USEFUL INFORMATION

SURFACE PUMPS OBERFLÄCHENPUMPEN POVRCHOVÁ ČERPADLA POMPE DE SUPRAFAŢĂ ПОВЕРХНОСТНЫЕ НАСОСЫ

BU SURFACE PUMPS

Single-stage self-priming centrifugal surface pump equipped with the Venturi tube system for increased suction capacity, designed for pumping of clean cold water from own intakes and

for increasing pressure. Sections of pump body and shaft that come in contact with water are made of stainless steel (INOX design). The pump has a power cable with a plug. The pump motor is provided with thermal protection.

APPLICATION:

Supply of water to houses, holiday houses, allotments and gardens. When combined with pressure tanks, the pumps can be used in single- and multifamily residential housing, in industrial applications and for irrigation purposes.

- **Class B Insulation**
- Operating mode - continuous
- . Protection - IP44

Materials:

- Housing: stainless steel AISI 304 •
- Shaft and rotor: stainless steel AISI 304 •
- . Impeller: Noryl (stainless steel AISI 304)
- Frame: cast iron •
- Pump end plate: stainless steel AISI 304 .
- Venturi tube: Noryl .
- . Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP •

PARAIVIE I															
Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)						
AJ 50/60	50	60	1100	230	8	3,2	1 x 1	37/21/20	10,5						

The pump for pumping of clean cold water from own intakes and for increasing pressure. BJ 45/75 is a single-stage self-priming centrifugal surface pump equipped with the Venturi tube system for increased suction capacity. Sections of pump body

and shaft coming in contact with water are made of stainless steel (INOX design). The pump is manufactured to the highest quality standards in terms of the design and materials used. The pump has a power cable with a plug, and the pump motor is provided with thermal protection.

APPLICATION:

Supply of water to houses, holiday houses, allotments and gardens. When combined with pressure tanks, the pumps can be used for single- and multi-family residential housing and in industrial applications.

- •
- Operating mode continuous .
- Protection IP44

Materials:

- Housing: stainless steel AISI 304 •
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Pump end plate / Frame: •
- stainless steel AISI 304/cast iron/aluminium Venturi tube: Noryl
- Mechanical seal: ceramics/graphite/NBR •
- Rotational speed of the electric motor: 2850RMP

Name	Head	Flow	Motor power	Voltage	Suction capacity	Amperage	Inlet/outlet	Dimensions L/H/W	Weight
	(m)	(l/min)	(W)	(V)	(m)	(A)	(cale)	(cm)	(kg)
BJ 45/75	45	75	1100	230	8	3,9	1¼ x 1	36/25/18	8,5

Single-stage self-priming peripheral surface pumps for pumping of clean cold water from own intakes and for increasing pressure. Pump impellers are made of brass. The pump body is made of durable cast iron with the built-in non-return valve. The pump motor is provided with thermal protection.

The pumps have a power cable with a plug.

APPLICATION:

Supply of water to holiday houses, allotments and gardens. When combined with pressure tanks, the pumps can be used for single- and multi-family residential housing, in industrial applications and for irrigation purposes.

PARAMETE	RS //////								
Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
QB 60	30	32	370	230	6	2,8	1 x 1	21/17/17	4
WZI 250	35	35	250	230	8	1,6	1 x 1	25/21/16	7,5
WZI 750	60	50	750	230	8	5	1 x 1	26/21/18	9,3
WZI 850	78	50	850	230	8	4	1 x 1	28/23/19	10,8

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C Class B Insulation
- . Operating mode - continuous
- Protection IP44

Materials:

- · Housing: cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: brass

Single-stage self-priming centrifugal surface pump equipped with the Venturi tube system for increased suction capacity, designed for pumping of clean cold water from own intakes and for increasing pressure. The pump body is made of durable cast iron, and the pump motor is provided with thermal protection. The pump has a power cable with a plug. The pump is available with accessories or in the booster set.

APPLICATION:

Supply of water to houses, holiday houses, allotments and gardens. When combined with pressure tanks, the pumps can be used for single- and multi-family residential housing, in industrial applications and for irrigation purposes.

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- **Class B Insulation**
- Operating mode continuous • .
- Protection IP44

Materials:

• Housing: cast iron

- Shaft and rotor: stainless steel AISI 304 •
- Impeller: Noryl .
- . Pump end plate / Frame: cast iron
- Venturi tube: Noryl
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP •

MARAMETERS

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
JET 100A	50	60	1100	230	8	3,2	1x1	39/20/18	11,5
JET 100A LONG	50	60	1100	230	8	3,6	1x1	44/21/18	12,5

Single-stage self-priming centrifugal pumps equipped with the Venturi tube system for increased suction capacity, designed for pumping of clean cold water from own intakes and for increasing pressure. The JSW pumps are very efficient and additionally provide exceptionally good water suction capacity. JSW 200 pumps have a brass impeller. All JSW pumps

are equipped with thermal protection mounted in the motor winding.

APPLICATION:

Supply of water to houses and agricultural holdings, as well as for irrigation of gardens. When combined with pressure tanks, the pumps can be used for single- and multi-family residential housing, in industrial applications and for irrigation purposes.

PARAMETERS

	FARAMETERS														
Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)						
JSW 100	45	70	1100	230	8	3,2	1x1	39/21/19	11						
JSW 150	46	80	1500	230	8	5,6	1x1	41/21/19	11,5						
JSW 200	53	100	1800	230	8	8,2	1x1¼	52/25/22	17						

- · Operating mode continuous
- Protection IP44

Materials:

- Housing: cast iron
- · Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl / brass
- Pump end plate / Frame:
- stainless steel AISI 304 / aluminium •
- Venturi tube: Noryl
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP

The pump for pumping of clean cold water from own intakes and for increasing pressure. DP355 is a single-stage self-priming centrifugal surface pump equipped with the Venturi tube system immersed directly into a well for increased suction capacity. DP355 is one of the few pumps that has a suction capacity of 23 m when using the Venturi tube system immersed into the well. Due to the high suction capacity, the pump can replace a submersible pump. The pump body is made of durable cast iron, and the pump motor is provided with thermal protection. The pump has a power cable with a plug.

APPLICATION:

Supply of water to houses, holiday houses, allotments and gardens. When combined with pressure tanks, they can be used for single- and multi-family residential buildings, in industrial applications and for irrigation purposes.

- Maximum ambient temperature 40°C
- Class B Insulation
- Operating mode - continuous
- . Protection - IP44

Materials:

- Housing: cast iron
- Shaft and rotor: stainless steel AISI 304
- . Impeller: Noryl
- Pump end plate / Frame: cast iron
- Venturi tube: Noryl
- .
- Mechanical seal: ceramics/graphite/NBR Rotational speed of the electric motor: 2850RMP

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
DP355	38	42	1100	230	23	3,2	1 x 1	40/18/18	14,5
DP370	50	35	1100	230	23	3,6	1 x 1	39/21/19	15

BU SURFACE PUMPS

suction capacity. The pump body is made of a high quality material. Pumps are equipped

with thermal protection. The pump is available with fittings, booster sets and intelligent

Supply of water to houses, holiday houses, allotments and gardens, as well as for irrigation

family residential housing, agricultural holdings and in industrial applications.

purposes. When combined with pressure tanks, the pumps can be used for single- and multi-

Protection - IP44 .

with a switch integrated into the housing and a carrying handle. The pump motor is provided Materials:

- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Pump end plate / Frame: polipropylene/aluminium .
- Venturi tube: Noryl
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP

PARAMETERS

pump controllers.

APPLICATION:

Name	Head (m)	Flow (I/min)	Motor power (W)		Suction capacity (m)		Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
PJ 65/45	45	60	1100	230	8	3,6	1x1	39/25/18	9,5
Garden	50	60	1100	230	8	3,8	1x1	39/27/19	10

MULTI1300 INOX MULTI-GARDEN

Self-priming centrifugal pump with the built-in screen filter, equipped with the Venturi tube system for increased suction capacity.

The pump body is made of a high quality material and stainless steel. The pump is equipped with a switch integrated into the housing and a carrying handle. The pump motor is provided with thermal protection. The pump is available with fittings, booster sets and intelligent pump controllers.

APPLICATION:

Supply of water to houses, holiday houses, allotments and gardens, as well as for irrigation purposes. When combined with pressure tanks, the pumps can be used for single- and multi-family residential housing, agricultural holdings and in industrial applications

PARAMETERS

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>annnnnnnnnn</i>			
Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
MULTI1300 INOX	48	80	1300	230	8	6	1x1	44/28/23	11
MULTI-GARDEN	40	60	1100	230	8	3	1 x 1	65/55/30	19

IMAGE: COMPLETE MULTI-GARDEN BOOSTER SET

Operating conditions

- Maximum liquid temperature 40°C
 Maximum ambient temperature 40°
- Maximum ambient temperature 40°C
- Class B Insulation
- Operating mode continuous Protection IP44

• FIOLECTION - 1844

Materials:

- Housing: technopolymer/ stainless steel AISI 304
 Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Pump end plate / Frame: polipropylene/aluminium
- Venturi tube: Noryl
- Mechanical seal: ceramics/graphite/NBR
- Filter: screen

BU SURFACE PUMPS MHI 11 7 21 20 19 18 17 16 15 14 3 Operating conditions: Maximum liquid temperature 40°C • 13 Maximum ambient temperature 40°C • • **Class B Insulation** • Operating mode - continuous Protection - IP44 • Materials: Housing: stainless steel AISI 304 • Shaft and rotor: stainless steel AISI 304 Impeller: Noryl • Impeller: AISI 304 (INOX design) Pump end plate / Frame: cast iron . • Venturi tube: Noryl • Mechanical seal: ceramics/graphite/NBR •

Rotational speed of the electric motor: 2850RMP

Group of multi-stage self-priming centrifugal pumps designed for pumping of clean cold water from own intakes and for increasing pressure. The pumps are equipped with the Venturi tube system for increased suction capacity. MHI pumps are available in two variants: with stainless steel impellers (INOX design) or with noryl impellers. All pumps have a stainless steel body. Due to low-noise operation, the pumps can be installed inside the houses. The pumps are equipped with thermal protection mounted in the motor winding.

MHI 1800

PARAIVIETERS									///////////////////////////////////////
Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
MHI 1300 / INOX	55	100	1300	230	8	7	1x1	42/15/19	13,5
MHI 1500 INOX	50	130	1500	230	8	7,5	1x1	44/16/20	15
MHI 1800 / INOX	80	100	1800	230	8	8,8	1x1	48/18/20	17
MHI 2200	60	180	2200	230	8	10,5	1x1¼	46/18/21	18,5
MHI 2500 / INOX	85	100	2500	230	8	11	1x1	55/21/18	24

Group of multi-stage self-priming centrifugal pumps designed for pumping of clean cold water from own intakes and for increasing pressure. The pumps are equipped with the Venturi tube system for increased suction capacity. MH pumps are available in two variants: with stainless steel impellers (INOX design) or with noryl impellers. All pumps have a stainless steel body. Due to their high performance, efficiency and parameters, the pumps are often used to supply water to houses and agricultural holdings. Due to low-noise operation, the pumps can be installed inside the houses. The pumps are equipped with thermal protection mounted in the motor winding. All MH pumps are available in 230 V ~ / 50 Hz version. MH 1300 / INOX and MH 2200 INOX pumps are additionally available in the 400 V ~ 3/50 Hz version. MH pumps are also available with booster sets and with PC intelligent pump controllers (PC15, PC16, PC10P, PC59).

PARAMETER	RS ////////////////////////////////////								
Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
MH 1300 / INOX	55	100	1300	230/400	8	6	1x1	43/15/18	13,5
MH 2200 INOX	60	180	2200	230/400	8	10	1x1¼	46/18/21	20
MH 3000 INOX	70	190	3000	230	8	12,5	1x1¼	47/19/22	26

The pump for pumping of clean cold water from own intakes and for increasing pressure. BJ 40/55 is a single-stage self-priming centrifugal surface pump equipped with the Venturi tube system for increased suction capacity. Sections of pump body and shaft that come in contact with water are made of stainless steel (INOX).

The pump is manufactured to the highest quality standards in terms of the design and materials used. The pump has a power cable with a plug, and the pump motor is provided with thermal protection.

Application:

Supply of water to houses, gardens, industrial washing facilities, air conditioning and cooling systems. When combined with pressure tanks, the pumps can be used for single- and multifamily residential housing and in industrial applications.

PARAMETERS

- 5										
	Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
	BJ 40/55	40	55	550	230	8	3.8	1x1	36/20/18,5	8.5

Operating conditions:

- Maximum liquid temperature 50°C
- Maximum ambient temperature 50°C
- **Class F Insulation**
- Operating mode continuous
- Protection IP55 •

Materials:

- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Pump end plate: stainless steel AISI 304
- Venturi tube: Noryl
- Mechanical seal: ceramics/graphite/NBR
- . Rotational speed of the electric motor: 2850RMP

The pump for pumping of clean cold water from own intakes and for increasing pressure. IWH2-03 is a single-stage self-priming centrifugal surface pump equipped with the Venturi tube system for increased suction capacity. Sections of pump body

and shaft that come in contact with water are made of stainless steel (INOX). The pump is manufactured to the highest quality standards in terms of the design and materials used. The pump has a power cable with a plug, and the pump motor is provided with thermal protection.

Application:

Supply of water to houses, gardens, industrial washing facilities, air conditioning and cooling systems.

When combined with pressure tanks, the pumps can be used for single- and multi-family residential housing and in industrial applications.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
	IWH2-03	43	70	750	230	8	5,2	1x1	37/20/19	10

Operating conditions:

- Maximum liquid temperature 50°C
- Maximum ambient temperature 50°C
- **Class F Insulation** .
- Operating mode continuous
- Protection IP55

Materials:

- · Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 316 •
- Pump end plate: stainless steel AISI 304
- Venturi tube: Noryl
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP

The pump for pumping of clean cold water from own intakes and for increasing pressure. HP Series are multi-stage self-priming centrifugal surface pumps equipped with the Venturi tube system for increased suction capacity. Sections of pump body and shaft that come in contact with water are made of stainless steel (INOX). The pump is manufactured to the highest quality standards in terms of the design and materials used. The pump has a power cable with a plug, and the pump motor is provided with thermal protection.

Application:

Supply of water to houses, gardens, industrial washing facilities, air conditioning and cooling systems. When combined with pressure tanks, the pumps can be used for single- and multi-family residential housing and in industrial applications.

- Maximum liquid temperature 70°C
- Maximum ambient temperature 50°C
- Class F Insulation
- Operating mode continuous
- Protection IP55

Materials:

- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
- Pump end plate: stainless steel AISI 304
- Mechanical seal: ceramics/graphite/NBR
- · Rotational speed of the electric motor: 2850RMP

PARAMETERS Flow (I/min) Motor powe (W) Voltage (V) Amperage (A) Inlet/outlet Dimensions L/H/W Head Suction capacit Weight Name (m) (cm) (kg) (m) (inch) **HP 1300 INOX** 58 75 1300 230 47/27/20 8 6,2 1x1 13,1 **HP 1500 INOX** 1500 230 8 48/20/23 62 110 9,6 1x1 15,5

SWIMMING POOL PUMPS POOLPUMPEN BAZÉNOVÁ ČERPADLA POMPE DE BAZIN БАССЕЙНОВЫЕ НАСОСЫ

SWIMMING POOL PUMPS

Self-priming swimming pool pump with pre-filter.

Designed for maximum efficiency of filtration and circulation of water with chlorine content. It can operate with sea water. The pump is made of plastic materials, with a catcher for leaves and larger impurities, including fibrous ones. Available with Ø 50 mm or Ø 48.5 mm inlets/outlets.

Motor

- Asynchronous squirrel-cage with external ventilation
- Supply voltage 220-240 V/ 50 Hz.
- IP55 Ingress Protection
- Insulation Class F
- Single-phase motor with built-in capacitor and thermal protection
- Self-lubricating ball bearings
- Rotational speed 2850 rpm
- Designed for continuous operation

Flow/Head

Operating conditions:

- Water temperature: 5-50°C
- Ambient temperature: max. 50°C
- Max. working pressure: 0.3 MPa

Materials:

- Pump housing: ABS
- Pre-filter: ABS
- Inlet/outlet: ABS/PVC
- Access plate: Polyethylene HD
- Impeller: Glass fibre reinforced LEXAN (resistant to abrasion by sand)
- Venturi tube: Glass fibre reinforced LEXAN (resistant to abrasion by sand)
- Mechanical seal: SiC/C
- Shaft: Stainless steel SUS 316
- Base: Polypropylene

Marria	Flow	Head	Motor	power	Amperage	Weight
Name	(l/min)	(m)	(kW)	(HP)	(A)	(kg)
SWIM 025	195	7	0,37	0,50	1,9	9,3
SWIM 035	255	10	0,50	0,75	2,7	9,5
SWIM 050	340	12,5	0,75	1,0	3,8	9,7
SWIM 075	370	15	0,9	1,2	4,6	10,5
SWIM 100	390	17,5	1,1	1,5	5,8	10,9
SWIM 150	470	18,5	1,5	2,0	7,0	11,5

SWIMMING POOL PUMPS

Materials:

- Housing: plastic
- Shaft and rotor: stainless steel AISI 304
- Impeller: plastic
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2900RMP

MARAMETERS

Name	Head	Flow	Motor power	Voltage	Suction capacity	Amperage	Inlet/outlet	Dimensions L/H/W	Weight
	(m)	(I/min)	(W)	(V)	(m)	(A)	(inch)	(cm)	(kg)
JA50	10	180	370	230	8	2	48,5 lub 50	34/24/16	6

SWIMMING POOL PUMPS

Submersible fountain pumps.

4

The pumps are used to supply water to fountains, waterfalls, streams, ponds, decorative parts and features that using the effect of flowing water, as well as

in food processing plants and agricultural production for draining ponds and fields. The pumps have a high efficiency motor and built-in thermal protection.

- Operating conditions:
- Maximum liquid temperature 40°C •
- Liquid type: water with small amount of sand .
- **Class F Insulation** •
- Operating mode - continuous
- Protection - IP68
- Immersion depth ≤5m

Materials:

- Housing: stainless steel AISI 304 / plastic

MARAMETERS

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Max. diameter of impurities (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
FON 150	5	220	150	230	20	1,6	1½ x 1	35/18/22	7
FON 250	6	230	250	230	20	2,4	1½ x 1	35/18/22	7,5
FON 400	10	330	400	230	20	3,5	1½ x 1	35/18/22	8

BOOSTER SETS WASSERVERSORGUNGSSÄTZE DOMÁCÍ VODÁRNY SETURI DE HIDROFOARE ГИДРОФОРНЫЕ КОМПЛЕКТЫ

BOOSTER SETS

BOOSTER SETS

The booster set s a proven solution for automatic supply of water to households. Each of the IBO surface pumps can be combined in any booster set. The size of the tank is selected according to individual needs and requirements of clients.

In addition to the classic sets of pump + tank, it is possible to configure the pump with intelligent controllers such as: PC (PC-10P/ PC-13 / PC-15/PC-16/PC-59), SK(SK15) and IVR-02 frequency converters. The controllers are equipped with an additional dry-running protection. The set's operation is fully automatic - it starts the pump when the water is turned on and stops it when the water is turned off. TANKS THAT CAN BE SELECTED: IBO POZIOM / IPO PION POZIOM / IBO INOX / IBO ITALY / IBO ITALY FIX.

- The set includes:
- pump,
- pressure tank, .
- . pressure switch, •
- pressure gauge,
- five-way delivery outlet •
- · anti-vibration hose with elbow

Name	RECOMMENDED TANK MODEL	RECOMMENDED INTELLIGENT CONTROLLER MODEL
AJ 50/60	24 / 50 / 80 / 100L/ 150	PC15 / PC16 / PC59 / PC10P

BOOSTER SETS **OB**

BOOSTER SETS

Flow/Head m 60 _ _ WZI 750 50 ______ 40 ...WZI 250. 30 20 10 40 70 10 20 30 50 60 80 I/min → 3 4,2 0,6 1,8 5,4 m³/h →

MARAMETERS

Name	RECOMMENDED TANK MODEL	RECOMMENDED INTELLIGENT CONTROLLER MODEL
JET 100	24 / 50 / 80 / 100 / 150	PC15 / PC16 / PC59 / PC10P
WZI 250	2 / 24 / 50 / 80 / 100	PC15 / PC16 / PC59 / PC10P
WZI 750	24 / 50 / 80 / 100 / 150	PC15 / PC16 / PC59 / PC10P

Name	RECOMMENDED TANK MODEL	RECOMMENDED INTELLIGENT CONTROLLER MODEL
DP 355	24 / 50 / 80 / 100 / 150	PC15 / PC16 / PC59 / PC10P
JSW 150	24 / 50 / 80 / 100 / 150	PC15 / PC16 / PC59 / PC10P
JSW 200	50 / 80 / 100 / 150	PC16 / PC10P

BOOSTER SETS **OB**

BOOSTER SETS

IMAGE: GARDEN PUMP WITH FITTINGS IMAGE: PJ PUMP WITH FITTINGS

IMAGE: MULTI 1300 PUMP WITH FITTINGS

IMAGE: MULTIGARDEN PUMP WITH FITTINGS

Flow/Head

M					
Name RECOMMENDED TANK MODEL		RECOMMENDED INTELLIGENT CONTROLLER MODEL			
GARDEN	24 /50	PC15 / PC59 / PC13			
MULTI 1300 INOX	24 / 50 / 80 / 100 / 150	PC15 / PC16 / PC59 / PC10P			
MULTIGARDEN	-	-			
PJ	24 /50	PC15 / PC59 / PC13			

BOOSTER SETS

BOOSTER SETS

HP1500INOX WITH IBO TANK TYPE: 80

IWH2-03 WITH IBO TANK TYPE: 24

HP1500INOX WITH IITALY FIX 80L TANK

IWH2-03 WITH IITALY FIX 50L TANK

IWH2-03 WITH IITALY FIX 80L TANK

Name	RECOMMENDED TANK MODEL	RECOMMENDED INTELLIGENT CONTROLLER MODEL		
HP1500 INOX	50 / 80 / 100/ 150	PC-16 / PC-59 / PC-10P		
BJ 45/75	24 / 50 / 80 / 100/ 150	PC-16 / PC-59 / PC-10P /PC-13 / SK-15		
IWH 2-03	24 / 50 / 80 / 100/ 150	PC-16 / PC-59 / PC-10P /PC-13 / SK-16		

INWERTERS WECHSELRICHTER / INVERTER STŘÍDAČE / INVERTORY ONDULOARE / INVERTOARE ИНВЕРТОРЫ / ПРЕОБРАЗОВАТЕЛИ

The AUTOIBO series pumps are equipped with a high performance frequency converter. Pumps equipped with frequency converters create seamless system to keep water supply system pressure constant regardless of the water demand. The frequency converter integrated into the pump will allow to reduce electricity consumption. Compared to the traditional water supply method, the constant pressure water supply system

with frequency converter saves up to 60% of energy. The pump motor speed is adjusted to the various operating conditions of the water supply system.

A pump with an inverter is an easy-to-use control and protection device that maintains a constant, set water pressure by changing the rotational speed of the pump motor.

ADVANTAGES:

- 1. Low-noise operation: can be installed in the house.
- 2. Simple operation: easy to use, all functions can be terminated by pressing a button.
- 3. Long-term reliability of the co-operating pumps: the average torque and shaft wear are reduced due to decreasing the average rotational speed, which increases the pump operational lifetime. Due to the built-in soft start and stop function, the device allows to eliminate the water hammer.
- 4. Fully protected: the system incorporates the most versatile overcurrent, overvoltage, undervoltage, short-circuit, impeller blocking and dry-running protection technology without the need to install probes/sensors in the well.

PARAMETERS Suctio otationd Voltage (V) Inlet/outlet (inch) Weight (kg) Head (m) Flow (l/min) Motor po (W) Amperag (A) Dimensions L/H/W Name speed range capacity (m.) (cm) (rpm AUTOIBO 60 50 800 230 3,6 8 0-3000 1 x 1 31,5 x 21 x 30,5 14

INWERTERS 🚫 🖪

HOME 1

1

Flow/Head

The HOME 1 series pumps are equipped with a high performance frequency converter. Pumps equipped with frequency converters create seamless system to keep water supply system pressure constant regardless of the water demand. The frequency converter integrated into the pump will allow to reduce electricity consumption. Compared to the traditional water supply method, the constant pressure water supply system with frequency converter saves up to 60% of energy. The pump motor speed is adjusted to the various operating conditions of the water supply system.

A pump with an inverter is an easy-to-use control and protection device that maintains a constant, set water pressure by changing the rotational speed of the pump motor.

ADVANTAGES:

- 1. Low-noise operation: can be installed in the house.
- 2. Simple operation: easy to use, all functions can be terminated by pressing a button.
- 3. Long-term reliability of the co-operating pumps: the average torgue and shaft wear are reduced due to decreasing the average rotational speed, which increases the pump operational lifetime. Due to the built-in soft start and stop function, the device allows to eliminate the water hammer.
- 4. Fully protected: the system incorporates the most versatile overcurrent, overvoltage, undervoltage, short-circuit, impeller blocking and dry-running protection technology without the need to install probes/sensors in the well.

M PARAMETERS Rotationa Dimensions (mm Head (m) Flow (I/min) Motor pow (W) Voltage (V) Suction capacity (m.) Inlet/outlet (inch) Weight (kg) Name speed range а d h h (rpm HOME 1 30(25) 100 750 230 8 0-3000 1 x 1 230 144 166 278 7

158

IVR-02M Intelligent Pump Controller is an easy-to-use control and protection device for direct connection of 0.75 KW to 1.5 KW (from 1 HP to 2 HP) single-phase submersible pumps, surface pumps, deep well pumps, etc., maintaining a constant, set water pressure by changing the rotational speed of the pump motor.

220

The IVR-02M model provides many operating modes by adapting to various electrical systems.

SYSTEM ADVANTAGES

Energy efficiency: Compared to the traditional water supply method, the constant pressure water supply system with frequency converter saves up to 30%-60% of energy.

Fully protected: the system incorporates the most versatile overcurrent, overvoltage, undervoltage, short-circuit, impeller blocking and dry-running protection technology without the need to install probes/sensors in the well.

Simple operation: easy to use, all functions can be terminated by pressing a button, without the need to hire programming specialists.

Long-term reliability of the co-operating pumps: the average torque and shaft wear are reduced due to decreasing the average rotational speed, which increases the pump operational lifetime. Due to the built-in soft start and stop function, the device allows to eliminate the water hammer

(the water hammer is a sudden pressure increase that occurs at rapid stopping or starting of liquid flow.) The ability to control the operation of two pumps supplying the system.

APPLICATION:

IVR-02M can be used in all applications where maintaining a constant water pressure in the system and control and protection of a pump or a set of two pumps is required.

IVR-02M controls automatic switching on and off, and adapts the motor speed to the requirements of the water supply system. Typical application:

- houses
- apartments
- holiday houses
- agricultural holdings
- supply of water from the well
- · irrigation of growing houses, gardens, agricultural land
- · collecting and using rainwater

Installation data				
Permissible ambient temperature	–10°C – +40°C			
Permissible ambient humidity	20% – 90% RH			
Permissible liquid temperature	0°C – +50°C			
Ingress Protection	IP55			
Mounting orientation	Vertical			
Unit dimensions (L/W/H)	244/220/158 mm			
Inlet/outlet	G 1 ¼″/G 1 ¼″			
Minimum capacity of pressure tank	2L			

INVERTER SYSTEM - IVR-02

Main Technical Data					
Rated output power	0,37 KW – 1,5 KW (0,5 HP – 2 HP)				
Rated input voltage	AC160-250V/50-60HZ (single-phase)				
Pump max. amp rating	12A				
Rated output voltage	AC 230V / 20-60 Hz (single-phase)				
Additional pump rated output voltage	AC 230V / 50 Hz (single-phase)				
Response time under overload condition	5 s – 5 min.				
Pressure setting range	1 – 9 bar				
Response time under open phase condition	<5 s				
Response time under short-circuit condition	<0,1 s				
Response time under overvoltage/undervoltage condition	<5 s.				
Response time under dry-run condition	б s				
Time to activation after overload condition	30 min.				
Time to activation after overvoltage/undervoltage condition	5 min.				
Time to self-activation after dry-run condition	8s, 1 min, 10 min, 30 min, 1 h, 2 h				
Deactivation limit at overvoltage	270V				
Deactivation limit at undervoltage	100V				
Horizontal distance	≤1000 m				
Protections	Dry-run Short-circuit Overload Pump overloaded Voltage spike Undervoltage Overvoltage				
Main Technical Specification					
Control specification	double flow control				
	pressure control				
Control method	Manual / Automatic				
Liquid flow control specification	probe electrode pulse and flow switch				
Pressure control specification	Pressure sensor 24 V, 4–20 mA				

INVERTER SYSTEM - IVR -10 S/T

IVR-10 S/T Intelligent Pump Controller is an easy-to-use control and protection device for direct connection of 1.1 KW do 2.2 KW (from 1.5 HP to 2.5 HP) single-phase (IVR-10S) or 3-phase (IVR-10T) deep well pumps, surface pumps, submersible pumps, etc., maintaining a constant, set water pressure by changing the rotational speed of the pump motor. The IVR-10 S/T model provides many operating modes by adapting to various electrical systems.

Its important feature that distinguishes it from popular on/off control devices is:

- 1. Energy efficiency. Compared to the traditional water supply method, the constant pressure water supply system with frequency converter saves up to 30%-60% of energy.
- Simple operation: easy to use, all functions can be terminated by pressing a button, without the need to hire programming specialists.
- 3. Long-term reliability of the co-operating pumps: the average torque and shaft wear are reduced due to decreasing the average rotational speed, which increases the pump operational lifetime. Due to the built-in soft start and stop function, the device allows to eliminate the water hammer (the water hammer is a sudden pressure increase that occurs at rapid stopping or starting of liquid flow.)
- 4. Fully protected: the system incorporates the most versatile overcurrent, overvoltage, undervoltage, short-circuit, impeller blocking and dry-running protection technology without the need to install probes/sensors in the well.
- 5. The controllers can be combined into pump groups of up to 6 pumps. The group is controlled by one main controller selected by the user while other controllers adjust the operation to the system requirements. The set is very easily programmable and does not require the assistance of the programmer.

APPLICATION:

IVR-10S/T can be used in all applications where maintaining a constant water pressure in the system, as well as control and protection of a single pump that controls automatic switching on and off by various electrical systems is required.

Typical application:

- houses / apartments / holiday houses,
- agricultural holdings,
- · supply of water from the well,
- · irrigation of growing houses, gardens, agricultural land,
- collecting and using rainwater,
- · industrial equipment.

CAN BE ARRANGED IN PUMP GROUPS

INWERTERS 🧿 🖪 🛛

INVERTER SYSTEM - IVR-20/30/40

PARAMETERS //// Operating current (A) Input voltage frequency (Hz) Output voltage frequency (Hz) Pressure setting Output voltage (V) Input voltage (V) Pump power (kW) Dimensions Pressure sensor Name range (bar) (mm) 1,1 kW 7A 1 x 230V (Permissible IVR-10S 1,5 kW 1 x 230V 9.6A range 160-260V) 2.2 kW 11,5A 4÷20 mA +24V 210 x 173 x 124 0,5-9 bar 50/60 Hz 20-50/60Hz 10 bar mm 1,1 kW 3.2A 3 x 400V (Permissible IVR-10T range 320-450V) 1,5 kW 4,3A 3 x 400V 2,2 kW 5A

INVERTER SYSTEM – IVR-09T

IVR-09T Intelligent Pump Controller is an easy-to-use control and protection device for direct connection of

0.75 KW to 7.5 KW (from 1 HP to 10 HP) 3-phase deep well pumps, surface pumps, submersible pumps, etc., maintaining a constant, set water pressure by changing the rotational speed of the pump motor. The IVR-09T model provides many operating modes by adapting to various electrical systems. The IVR-09 series controllers can be used in pump groups of up to 6 pumps. Its important feature that distinguishes it from popular on/off control devices is:

- 1. Energy efficiency. Compared to the traditional water supply method, the constant pressure water supply system with frequency converter saves up to 30%-60% of energy.
- 2. Simple operation: easy to use, all functions can be terminated by pressing a button, without the need to hire programming specialists.
- 3. Long-term reliability of the co-operating pumps: the average torque and shaft wear are reduced due to decreasing the average rotational speed, which increases the pump operational lifetime. Due to the built-in soft start and stop function, the device allows to eliminate the water hammer. (the water hammer is a sudden pressure increase that occurs at rapid stopping or starting of liquid flow.)
- 4. Fully protected: the system incorporates the most versatile overcurrent, overvoltage, undervoltage, short-circuit, impeller blocking and dry-running protection technology without the need to install probes/sensors in the well.
- 5. The controllers can be combined into pump groups of up to 6 pumps. The group is controlled by one main controller selected by the user while other controllers adjust the operation to the system requirements. The set is very easily programmable and does not require the assistance of the programmer.

APPLICATION:

IVR-09t can be used in all applications where maintaining a constant water pressure in the system and control and protection of a pump or a set of two pumps is required. Typical application:

CAN BE ARRANGED IN PUMP GROUPS

- houses / apartments / holiday houses
- agricultural holdings
- supply of water from the well
- · irrigation of growing houses, gardens, agricultural land
- collecting and using rainwater
- industrial equipment
- industrial equipment

Motor power	Dimensions (mm)					
	B1	B2	B3	L1	L2	н
1.1 kW and less	306	276	214	400	314	546
1.5 kW to 2,2 kW	306	276	214	430	314	576
4 kW to 7.5 kW	360	320	270	520	350	710

double flow control

Manual / Automatic

probe electrode pulse and flow switch

Max. Motor Current

Pressure sensor 24 V, 4-20 mA

INVERTER SYSTEM – IVR-09T

Main Teo	hnical Data	Main Techn	ical Specification
Rated output power	0,37 KW – 7,5 KW (0,5 HP – 10 HP)	Control on oife stime	double flow con
Rated input voltage	AC~3x400V/50-60HZ (3-phase)	Control specification	pressure control
Rated output voltage	AC ~3x400V / 20-60 Hz (3-phase)	Control method	Manual / Automa
Response time under overload condition	5 s – 5 min.	Liquid flow control specification	probe electrode p and flow switch
Pressure setting range	1 – 9 bar	Pressure control specification	Pressure sensor
Response time under open phase condition	<5 s	Installat	ion Conditions
Response time under short- circuit condition	<0,1 s	Permissible ambient temperature	–10°C – +40°C
Response time under overvoltage/undervoltage condition	<5 s.	Permissible ambient humidity	20% – 90% RH
Response time under dry-run condition	6 s	Permissible liquid temperature	0°C – +100°C
Time to activation after overload condition	30 min.	Ingress Protection	IP54
Time to activation after overvoltage/undervoltage	5 min.	Mounting orientation	Vertical
condition	8s, 1 min, 10 min, 30 min, 1 h,	Minimum pressure tank capacity	4L
Time to self-activation after dry-run condition	2 h	Motor power	Max. Motor Curr
Deactivation limit at overvoltage	418V	0,75-1.5 kW / 1-2 HP	4.3A
Deactivation limit at undervoltage	324V	2.2 kW / 3 HP	6.1A
Horizontal distance	≤1000 m	3.0-4.0 kW / 4-5,5 HP	9.7A
	Dry-run Short-circuit Overload	5.5 kW / 7.5 HP	14A
Protections	Pump overloaded Voltage spike Undervoltage Overvoltage	7.5 kW / 10 HP	18A

MULTI SET IVR-02

The set is equipped with the IVR-02 (230V) frequency converter and the set of HP 1500 INOX or MH 1300 INOX pumps. Multi-Set is an easy-to-use device designed for pumping of clean water in order to increase pressure in water supply systems, maintaining a constant, set water pressure by changing the rotational speed of the pump motor, with additional control and protection features.

Advantages:

- Energy efficiency: reduction of energy consumption by 30%–60%..
- Simple operation: all functions can be terminated by pressing a button.
- Reliability: the average torque and shaft wear are reduced due to decreasing the average rotational speed, which increases the pump operational lifetime.
- Due to the built-in soft start and stop function, the device allows to eliminate the water hammer.
- Fully protected: the system incorporates the overcurrent, overvoltage, undervoltage, short-circuit, impeller blocking and dry-running protection technology without the need to install probes/sensors in the well.
- The ability to control the operation of two pumps that supply the system.
- · Low-noise operation.

DESIGN

- Pumps x 2 HP 1500INOX (MH 13000INOX)
- Frequency converter IVR-02 (230V)
- IBO ITALY steel fittings
- · Check and water stop valves and fittings
- 8L IBO ITALY pressure vessel

APPLICATION

- Houses
- Apartments
- Holiday houses
- Agricultural holdings
- Supply of water from the well
- Irrigation of growing houses, gardens, agricultural land
- Collecting and using rainwater
- Industrial equipment

MARAMETERS

WW FANAMETENS W							
Name	Head (m)	Flow (I/min)	Pressure (bar)	Water temp. (℃)	Ambient temp. (℃)	Inlet (mm)	Outlet (mm)
MULTI SET IVR-02/HP	62(*55)	190 (*160)	9	+50	+40	40	40

*Details for MH pumps

INWERTERS 🧿

MULTI SET IVR-09/11

The set is equipped with the IVR-09 (400V) / IVR-11(400V) frequency converter and the CV series pump/pumps. Multi-Set is an easy-to-use device designed for pumping of clean water in order to increase pressure in water supply systems, maintaining a constant, set water pressure by changing the rotational speed of the pump motor, with additional control and protection features.

Advantages:

- Energy efficiency: reduction of energy consumption by 30%–60%..
- Simple operation: all functions can be terminated by pressing a button.
- Reliability: the average torque and shaft wear are reduced due to decreasing the average rotational speed, which increases the pump operational lifetime. Due to the built-in soft start and stop function, the device allows to eliminate the water hammer.
- Fully protected: the system incorporates the overcurrent, overvoltage, undervoltage, short-circuit, impeller blocking and dry-running protection technology without the need to install probes/sensors in the well.
- The ability to control the operation of two pumps that supply the system.
- · Low-noise operation.

DESIGN

- Pumps x 1/x 2/x 3/x 4/x 5/x 6 (CV3 Cv15)
- Frequency converter IVR-09 (400V) / IVR-11 (400V)
- IBO ITALY steel fittings
- Check and water stop valves and fittings
- IBO ITALY pressure vessel

APPLICATION

- Houses
- Apartments
- Holiday houses
- Agricultural holdings
- Supply of water from the well
- Irrigation of growing houses, gardens, agricultural land
- Collecting and using rainwater

IMAGE: MULTI SET IVR-09/11

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~
Name	Head (m)	Flow (m3/h)	Pressure (bar)	Water temp. (℃)	Ambient temp. (℃)	Inlet (mm)	Outlet (mm)	
MULTI SET IVR-02	220	5 - 84	16	+90	+40	40 - 50	40 - 50	

2-PUMP DELIVERY SIDE MANIFOLD

D Inlet/outlet (inch) A Length (mm) С F Spacing (mm) G Outlet (cale) В Ε Weight (kg) Inlet/outlet (inch) Distance between pumps (mm) Main pipe (cale) Name 2500 500 1 1⁄2 1 M 1 F 300 370 1⁄4 F 1,92 2503 500 2 1 M 1 F 300 370 1⁄4 F 2,41 2501 500 2 1 ¼ M 1 F 300 370 1⁄4 F 2,45 2510 700 2 1 ¼ M 1 F 360 370 1⁄4 F 2,60 2505 500 2 1 ½ M 1 F 300 370 1⁄4 F 1,50 2511 700 2 1 ½ M 1 F 360 390 1⁄4 F 3,34 2502 500 2 1⁄2 1 ¼ M 1 F 300 370 1⁄4 F 3,00 2513 700 2 1⁄2 1 ¼ M 1 F 360 390 1⁄4 F 3,30 2506 500 2 1/2 1 ½ M 1 F 300 370 1⁄4 F 3,10 2512 700 2 1⁄2 1 ½ M 1 F 360 390 1⁄4 F 3,30 2504 700 3 2 M 1 F 360 390 1⁄4 F 5,8 2514 700 DN100* 3 M 1 F 360 390 1⁄4 F 6,00 *flange Grubość kolektora: 3mm

2-PUMP SUCTION SIDE MANIFOLD

Name	A Length (mm)	B Main pipe (cale)	C Inlet/outlet (inch)	E Distance between pumps (mm)	G Outlet (cale)	Weight (kg)
2600	500	1 ½	1 M	300	1⁄2 F	1,80
2603	500	2	1 M	300	½ F	2,20
2601	500	2	1 ¼ M	300	½ F	2,22
2605	500	2	1 ½ M	300	½ F	2,22
2611	700	2	1 ½ M	360	½ F	3,10
2609	500	2 1/2	1 ¼ M	300	½ F	2,80
2613	700	2 1/2	1 ¼ M	360	½ F	3,00
2602	500	2 1/2	1 ½ M	300	½ F	2,80
2612	700	2 1/2	1 ½ M	360	½ F	3,00
2512	700	2 1/2	1 ½ M	360	½ F	3,30
2604	500	3	2 M	300	½ F	3,50
2610	700	3	2 M	360	½ F	3,80
2614	700	DN100*	3 M	360	½ F	6,00
*flange			Manifold	thickness: 3mm		

SUCTION SIDE MANIFOLD FOR 3-PUMP SETS

MARAMETERS

Name	A Length (mm)	B Main pipe (cale)	C Distance between pumps (mm)	D Inlet/outlet (inch)	E Outlet (cale)	Weight (kg)
3642	800	2	300	1 M	½ F	3,50
3640	800	2	300	1 ¼ M	1⁄2 F	3,70
3643	800	2 1/2	300	1 ¼ M	1⁄2 F	4,40
3641	800	2 1/2	300	1 ½ M	1⁄2 F	4,60
3644	800	3	300	2 M	1⁄2 F	5,50
3645	800	DN100*	300	3 M	1⁄2 F	9,00
*flange			Manifold thickn	iess: 3mm		

DELIVERY SIDE MANIFOLD FOR 2-PUMP VERTICAL SETS

MARAMET	ERS ////////////////////////////////////					
Name	A Length (mm)	B Main pipe (cale)	C Inlet/outlet (inch)	E Distance between pumps (mm)	G Outlet (cale)	Weight (kg)
2500 90	500	1 1⁄2	1 M	300	1⁄2 F	1,80
2503 90	500	2	1 M	300	½ F	2,20
2501 90	500	2	1 ¼ M	300	1⁄2 F	2,22
2510 90	700	2	1 ¼ M	360	½ F	2,22
2505 90	500	2	1 ½ M	300	1⁄2 F	3,10
2511 90	700	2	1 ½ M	360	½ F	2,80
2502 90	500	2 1/2	1 ¼ M	300	½ F	3,00
2513 90	700	2 1⁄2	1 ¼ M	360	1⁄2 F	2,80
2506 90	500	2 1⁄2	1 ½ M	300	1⁄2 F	3,00
2512 90	700	2 1⁄2	1 ½ M	360	1⁄2 F	3,50
2504 90	700	3	2 M	360	1⁄2 F	3.80
			Manifold	thickness: 3mm		

DELIVERY SIDE MANIFOLD FOR 3-PUMP VERTICAL SETS

MARAMETERS

Name	A Length (mm)	B Main pipe (inch)	C Distance between pumps (mm)	D Inlet/outlet (inch)	E Inlet/outlet (inch)	F Outlet (cale)	Weight (kg)
2500	800	2	300	1 M	1 F	¼ F	4,00
2503	800	2	300	1 ¼ M	1 F	1⁄4 F	4,30
2501	800	2 1⁄2	300	1 ¼ M	1 F	1⁄4 F	4,80
2510	800	2 1/2	300	1 ½ M	1 F	1⁄4 F	5,00
2505	800	3	300	2	1 F	1⁄4 F	5,90
			Manifold	thickness: 3mm			

PUMP GROUP BASE PLATE

MARAMETERS

Name	Number of pumps	A (mm)	В (mm)	C (mm)
4805	1 Pump	310	260	250
4800	2 Pumps	310	520	250
4802	2 Pumps	350	620	290
4813	2 Pumps	400	720	340
4803	3 Pumps	310	800	250
4806	3 Pumps	400	900	340
4804	4 Pumps	310	1080	250
4807	4 Pumps	400	1200	340

INDUSTRIAL PUMPS INDUSTRIEPUMPEN PRŮMYSLOVÁ ČERPADLA POMPE INDUSTRIALE ПРОМЫШЛЕННЫЕ НАСОСЫ

Single-stage non-self-priming centrifugal pumps designed for pumping non-aggressive liquids with non-abrasive and non-absorbent solids content of 0.27 kg/m³. The maximum temperature of the pumped liquid is up to 60°C. The pump motor is provided with thermal protection mounted in the motor winding. Hydraulic parts that come in contact with water are made entirely of stainless steel.

APPLICATION:

Agriculture: irrigation, drainage, water supply, pumping liquid fertilizers (not corrosive to AISI 304 steel). Industrial applications: supply of water, pumping liquids that are not corrosive to AISI 304 steel and non-explosive liquids, jest washing.

Air conditioning: heating, cooling. Household applications: supply of water, increasing pressure. The pumps is designed for continuous operation.

PARAMETERS

	<u>13 ////////////////////////////////////</u>								
Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Suction capacity (m.)	Amperage (A)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
CPM 18 INOX	18	150	550	230	7	2,5	1 x 1¼	31/23/21	9,1
CPM 20 INOX	20	170	800	230	7	3,8	1 x 1¼	31/23/21	9,8
CPM 26 INOX	26	200	1100	230	7	5,2	1 x 1¼	31/23/21	10,9
CPM 34 INOX	34	220	1500	230	7	7	1 x 1¼	36/25/24	16.4

Operating conditions

- Maximum liquid temperature 60°C
- Maximum ambient temperature 50°C
- **Class B Insulation** •
- . Operating mode - continuous
- Protection IP44

Materials:

- Housing: stainless steel AISI 304 •
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Pump end plate: stainless steel AISI 304
- Frame: Aluminium
- Rotational speed of the electric motor:

44

F-CPM / PMC INOX

PMC INOX

CENTRIFUGAL SINGLE-STAGE OPEN IMPELLER PUMPS

The pumps are designed for pumping contaminated liquids and substances containing solids with maximum particle diameter of 18 mm. The pumps are used in industrial and agriculture applications.

F-CPM INOX

CENTRIFUGAL SINGLE-STAGE CLOSED IMPELLER PUMPS

The pumps are designed for pumping slightly contaminated liquids and substances containing solids with maximum particle diameter of 1 mm. The pump is designed for pumping water with a maximum non-absorbent free solid content of 0.26 kg/m³, and

with a maximum dissolved solid content of 51 kg/m3, provided that the total gas content in the water does not exceed the saturation volume.

Application:

- Food industry: in washers and cleaning machines, for conveying food liquids, transferring suspended solids in food processing, fish farms
- Metalworking industry
- Textile industry: pumps are used in dye houses.
- Manufacturing industry: cleaning bottles, cans, glass
- Agriculture: pumps can be used for conveying moderately viscous slightly corrosive liquids, they can be used for pumping fertilizers. Pumps are also used for irrigation and drainage.
- Swimming pool systems
- HVAC industry: in air conditioning and heating systems

Operating conditions:

- Liquid temperature for PMC: 15-104oC
- Liquid temperature for F-PMC: 5-90oC
- Ambient temperature: up to 50oC
- Maximum pressure in the system: up to 10 bar
- Ingress Protection: IP55
- Winding insulation class: 155 (F)

Materials:

- Motor: asynchronous enclosed squirrelcage with aluminium housing and external cooling.
- Shaft: Stainless steel AISI 304
- Housing: Stainless steel AISI 304
- Impeller: Stainless steel AISI 304
- Pump end plate: Stainless steel AISI 304
- Mechanical seal: graphite/silicon carbide/ NBR.

Name	Α	В	С	D	F	L	Н	H1	H2	DNM	DNA
F-CPM 21 INOX	108	193	138	165	82	378	243	258	125	G2	G2
 F-CPM 26 INOX	108	193	138	165	82	415	242	258	125	G2	G2
F-CPM 27 INOX	108	193	138	165	82	432	242	258	125	G2	G2
PMC 1100 INOX	108	193	138	165	82	378	242	258	125	G2	G2
PMC 1500 INOX	108	193	138	165	82	378	242	258	125	G2	G2
PMC 2200 INOX	108	193	138	165	82	413	242	258	125	G2½	G2
PMC 3000 INOX	108	193	138	165	82	430	242	258	125	G2½	G2

DNA E

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
F-CPM 21 INOX	21	650	1500	230	9,2	2 x 2	18
F-CPM 26 INOX	26	710	2200	230	14	2 x 2	22
F-CPM 27 INOX	29	740	3000	400	11,3/6,5	2 x 2	23,4
PMC 1100 INOX	12	500	1100	230	7	2 x 2	16
PMC 1500 INOX	15	600	1500	230	9,2	2 x 2	17,4
PMC 2200 INOX	17	770	2200	230	14	2½ x 2	22
PMC 3000 INOX	22	930	3000	230	10/6,3	2½ x 2	23

MCI - a group of the top quality multi-stage non-self-priming centrifugal pumps. MCI pumps are powerful and robust units designed for a wide range of applications, from small home installations to continuous operation in large industrial systems. Hydraulic components are entirely made of AISI 304 (DIN 1.4301) stainless steel and reinforced mechanical seal allows to use liquids with temperatures of up to 70 degrees. MCI pumps provide flow of 3 m3 to 30 m3 per hour, and as a result they can be used in a wide range of applications.

APPLICATION:

Households:

- supply of water
- irrigation (including cooperation with sprinklers)
- increasing pressure
- utilizing rainwater

Industrial applications:

- Jet washers
- Air conditioning systems
- Cooling systems: refrigerant pumping
- Heating systems: hot water and glycol pumping
- Maintaining pressure in livestock buildings
- Systems increasing humidity and temperature
- Increasing pressure in building utility systems
- Pumping of moderately viscous slightly corrosive liquids
- Food industry: in washers and cleaning machines, for conveying food liquids

Agriculture:

- Agriculture:
- pumping and dosing fertilizers (not corrosive to AISI 304 steel)
- Maintaining pressure in livestock buildings

Operating conditions:

- Liquid temperature: ≤70°C
- Ambient temperature: ≤50°C
- Maximum pressure in the system: up to 8 bar
- Ingress Protection: IP55
- Insulation class: F

Materials:

- Body Stainless steel AISI 304.
- Shaft Stainless steel AISI 304.
- Mechanical seal SIC/SIC/EPDM
- Inlet/outlet: Stainless steel AISI 304
- Impellers, Venturi tubes, Venturi tube coverplates
- - Stainless steel AISI 304.
- Pump end plate: Stainless steel AISI 304
- Base plate: Steel
- Motor: asynchronous enclosed squirrel-cage with aluminium housing and external cooling

	0		Ampe-	Flow	7	10			20	24	27	20	24	37	10
Model	kW	wer Hp	rage A	l/min m3/h	0,4	10 0,6	14 0,8	17 1	20 1,2	24 1,4	27 1,6	30 1,8	34 2	2,2	40 2,4
MCI 1-2	0,25	0,3	2		19,5	19	18,5	18	17,5	17	16	15	14	13	12
MCI 1-3	0,25	0,3	2		29	28,5	26	25	24,5	23,5	22	21	19	17	16
MCI 1-4 MCI 1-5	0,37 0,37	0,5	2,4	H (m)	37 43	36 42	35	33 38	32 36	30 34	28 32	27 29	26 27	22 25	20
MCI 1-6	0,37	0,5	2,4		51	50	49	46	44	45	40	36	32	30	26
MCI 1-7	0,55	0,75	3,8		60	58	56	53	51	49	45	42	38	34	30
Model		wer	Ampe- rage	Flow I/min	14	20	27	33	40	47	50	53	60	67	
MCI 3-2	<i>kW</i> 0,25	<i>Нр</i> 0,3	A 2	m3/h	<i>0,8</i> 19,5	1,2 19	1,6 18,5	2 18	2,4 17	2,8 16,5	3 15	3,2 14,5	3,6 13,5	12 12	
MCI 3-3	0,37	0,3	2,4		27	26	25	24	23	22	21	20	17	15	
MCI 3-4	0,55	0,5	3,8	H (m)	36	35	34	32	31	29	28	27	23	20	
MCI 3-5 MCI 3-6	0,55 0,75	0,5	3,8 5,2		44 53	43 51,5	42 49	40	38 44	36 41	34 38	33 37	28,5 32	24 27	
MCI 3-7	1	1,35	6,2		63	61	59	56	54	51	49	47	41	35	
	Po	wer	Ampe-	Flow l/min	17	25	33	41	50	58	67	75	83	91	100
Model	kW	Hp	rage A	m3/h	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6
MCI 5-2	0,37	0,5	2,4		18,5	18	17,5	17	16	15,5	15	13,5	13	11	10
MCI 5-3 MCI 5-4	0,55 0,75	0,75	3,8 5,2		29 38	28,5 37	28 36	27 34	26,5 35,5	25,5 32	25 30	23 28	22 27	20 24	18 20
MCI 5-5	1	1,35	6,2	H (m)	47	46	45	44	42,5	41	40	36	35	32	27
MCI 5-6	1,3	1,7	8,4		56,5	55	54	53	52,5	51	49	45	44	42	36
MCI 5-7	1,5	2	9,2		67	65	64	61	59	57	55	51	49	44	38
Model		wer	Ampe- rage	Flow I/min	67	83	100	117	134	150	167				
MCI 8-10	<i>kW</i> 0,55	<u>Нр</u> 0,75	A 3,8	m3/h	4 15	5 14	6 13	7 12,5	8 10	9	10 8				
MCI 8-15	0,75	1	5,2		25	23	22	21	17	14	12				
MCI 8-20	1	1,35	6,2	11 (m)	32	29	27	25	20	21	17				
MCI 8-25 MCI 8-30	1,5 1,85	2 2,5	9,2 13	H (m)	43 50	40 46	38 44	34 40	30 32	25 30	20 26				
MCI 8-35	2,2	3	14		56	51	48	55	42	35	28				
MCI 8-40	2,2	3	14		65	57,5	57	50	43	42	34				
Model		wer	Ampe- rage	Flow l/min	67	84	100	117	134	150	167	184	200	217	234
MCI 10-1	<i>kW</i> 0,75	Нр 1	A 4,4	m3/h	4 14,5	5 14	6 13,5	7 13	8 12,5	9 12	10 11	11 10	12 9	13 8	14 7
MCI 10-2	1,25	1,75	8,1		30	29,5	29	28	27	26	24	23	21	19	16
MCI 10-3	2,2	3	14	H (m)	45,5	45	44	43	42	40	38	36	33	30	26
MCI 10-4 MCI 10-5	3	4	6,3 6,3		61 76,5	60,5 76	60 75	58 74	56 71	54 68	52 63	48 61	45 57	41 52	36 46
			Ampe-	Flow Marine		117	124	150	167	104	200	217	224		
Model	kW	wer Hp	rage A	Flow l/min m3/h	100 6	117 7	134 8	150 9	167 10	184 11	200 12	217 13	234 14		
MCI 12-10	1	1,35	6,2		19	18	17,5	16	15,5	14	13,5	12	10,5		
MCI 12-15	1,5	2	9,2	11 ()	28	27	26	25	24	22	19	18	15		
MCI 12-20 MCI 12-25	1,85 2,2	2,5 3	4,1 4,9	H (m)	34 47	36 45	32 43	32 41,5	29 39	29 36	26 32	24 30,5	22 27		
MCI 12-30	3	4	6,3		52,5	52	49	47,5	45	42	40	35	30,5		
Model	Po	wer	Ampe- rage	Flow l/min	100	134	167	200	234	250	267	284	300	317	334
	kW	Hp	A	m3/h	6	8	10	12	14	15	16	17	18	19	20
MCI 15-1 MCI 15-2	1,2 2,2	1,65 3	8,2 14		15,5 32	15 31,5	14,5 31	14 30,2	13 29,5	12 29	11,5 28	11 27	11 26	10,5 24	10 22
MCI 15-2 MCI 15-3	2,2 4	5,5	9,6	H (m)	32 49	48	47,5	47	29,5 46	44	43	42	40	37	36
MCI 15-4	5,5	7,5	11,1		67	66	65	64	62	61	57	56	54	52	49
Model	Ро	wer	Ampe- rage	Flow l/min	134	167	200	234	267	300	334	367	400		
	kW	Hp	Ă	m3/h	8	10	12	14	16	18	20	22	24		
MCI 16-10 MCI 16-20	1 1,5	1,35 2	6,2 9,2		12 24	11,5 23	11 22	10,5 21	10 20	9 19	8 16	7 14	6 12		
MCI 16-30	2,2	3	4,9	H (m)	38	36	34	33	30	28	26	23	20		
MCI 16-40	3	4	6,3		50	48	46	44	40	38	36	32	28		
Model	Po	wer	Ampe- rage	Flow l/min	167	200	234	267	300	334	367	400	434	467	
	kW	Hp	A	m3/h	10 13	12	14	16	18	20	22	24	26	28	
MCI 20-10 MCI 20-20	1 1,85	1,35 2,5	2,4 4,1	H (m)	13 25	12,5 24	12 23	11,5 22	11 21	8 18	10 18	9 16	8,5 14	7,5 12	
MCI 20-30	3000	4	6,3		39	38	36	35	33	28	30	27	24	21	
MCI 20-40	4000	5,5	9,6		52	50	48	47	44	42	39	35	31	27	
Model	Power		Ampe- rage	Flow l/min	134	167	200	234	267	300	334	367	400	434	467
MCI 30-1	kW	Нр 3	Ă	<i>m3/h</i>	8 15 5	10 15	12 15	14	16 14	18 13.5	20 13	22 12	24	26 11	28 10
MCI 30-1 MCI 30-2	2,2 4	5,5	2,4 3,5	H (m)	15,5 33	32,5	32	14,5 31,5	31	13,5 30,5	30	28	11,5 27	26	24
MCI 30-3	5,5	7,5	4,9		50	50	50	49	48	47	46	45	43	41	38
MCI 30-4	7,5	10	6,3		66	66	66	66	66	65	64	62	58	56	52

	Dimensions (mm)									
Model	B2	B3	H1	H2	L1	L2	L3	L4		
MCI 1-2	158	125	75	170	318	131	72	96		
MCI 1-3	158	125	75	170	318	131	72	96		
MCI 1-4	158	125	75	170	336	149	90	96		
MCI 1-5	158	125	75	170	354	167	108	96		
MCI 1-6	158	125	75	170	390	203	144	96		
MCI 1-7	158	125	75	170	390	203	144	96		

PARAMETERS	
, , uu uu uu E i Ei i S	

	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)					
MCI 1-2	20	50	250	230 / 50	1,6	1 x 1	7,6					
MCI 1-3	29	50	250	230 / 50	1,6	1 x 1	8					
MCI 1-4	38	50	370	230 / 50	2,4	1 x 1	8,3					
MCI 1-5	45	50	370	230 / 50	2,4	1 x 1	8,6					
MCI 1-6	54	50	370	230 / 50	2,4	1 x 1	9					
MCI 1-7	63	50	550	230 / 50	3,8	1 x 1	10					

	Dimensions (mm)									
Model	B2	B3	H1	H2	L1	L2	L4	L5		
MCI 3-2	158	125	75	170	318	131	72	96		
MCI 3-3	158	125	75	170	318	131	72	96		
MCI 3-4	158	125	75	170	336	149	90	96		
MCI 3-5	158	125	75	170	383	167	108	96		
MCI 3-6	158	125	75	170	416	203	144	96		
MCI 3-7	158	125	75	170	416	203	144	96		

Amperage (A) Inlet/outlet (inch) Weight (kg)

PARAMETERS				
	Head (m)	Flow (I/min)	Motor power (W)	
MCI 3-2	21	85	250	
MCI 3-3	28,5	85	370	

MCI 3-2	21	85	250	230 / 50	1,6	1 x 1	7,4
MCI 3-3	28,5	85	370	230 / 50	2,4	1 x 1	7,5
MCI 3-4	38	85	550	230 / 50	3,8	1 x 1	10
MCI 3-5	47,5	85	550	230 / 50	3,8	1 x 1	10,5
MCI 3-6	56,5	85	750	230 / 50	5,2	1 x 1	12
MCI 3-7	67	85	100	230 / 50	6,2	1 x 1	13

Voltage (V)

	Dimensions (mm)									
Model	B2	B3	H1	H2	L1	L2	L4	L5		
MCI 5-2	158	125	75	170	318	131	72	96		
MCI 5-3	158	125	75	170	347	131	72	96		
MCI 5-4	158	125	75	182	362	149	90	96		
MCI 5-5	158	125	75	182	380	167	108	96		
MCI 5-6	178	140	90	209	446	243	144	125		
MCI 5-7	178	140	90	224	446	243	144	125		

1700,000ETENS											
	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)				
MCI 4-2	19,5	130	370	230 / 50	2,4	1 1/4 x 1	8				
MCI 5-3	30	130	550	230 / 50	3,8	1 1/4 x 1	10				
MCI 5-4	39,5	130	750	230 / 50	5,2	1 1/4 x 1	11,5				
MCI 5-5	48	130	1000	230 / 50	6,2	1 1/4 x 1	12,5				
MCI 5-6	58,5	130	1300	230 / 50	8,8	1 1/4 x 1	15				
MCI 5-7	70	130	1500	230 / 50	9,2	1 1/4 x 1	17				

	Dimensions (mm)									
Model	B2	B3	H1	H2	L1	L2	L4	L5		
MCI 8-10	158	125	100	206	377	185	100	96		
MCI 8-15	158	125	100	206	377	185	100	96		
MCI 8-20	158	125	100	206	377	185	100	96		
MCI 8-25	158	125	100	232	408	200	100	96		
MCI 8-30	199	160	100	244	449	200	100	140		
MCI 8-35	199	160	100	244	479	230	130	140		
MCI 8-40	199	160	100	244	479	230	130	140		

	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
MCI 8-10	4	200	550	230 / 50	3,8	1 ½ x 1 ½	10
MCI 8-15	17,5	200	750	230 / 50	5,2	1 ½ x 1 ½	11
MCI 8-20	29	200	1000	230 / 50	6,2	1 ½ x 1 ½	13
MCI 8-25	34,5	200	1500	230 / 50	9,2	1 ½ x 1 ½	16
MCI 8-30	54	200	1850	230 / 50	12,2	1 ½ x 1 ½	21
MCI 8-35	62	200	2200	230 / 50	14	1 ½ x 1 ½	22
MCI 8-40	70	200	2200	230 / 50	14	1 ½ x 1 ½	23

	Dimensions (mm)									
Model	B2	B3	H1	H2	L1	L2	L4	L5		
MCI 10-1	158	125	100	206	383	185	100	96		
MCI 10-2	158	125	100	214	412	200	100	96		
MCI 10-3	199	160	100	244	448	200	100	140		
MCI 10-4	199	160	100	212	498	230	130	140		
MCI 10-5	199	160	100	212	558	290	190	140		

PARAMETERS							
	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
MCI 10-1	15,5	300	650	230 / 50	4,4	1 ½ x 1 ½	10
MCI 10-2	31,5	300	1200	230 / 50	8,1	1 ½ x 1 ½	12
MCI 10-3	46,5	300	2200	230 / 50	14	1 ½ x 1 ½	22
MCI 10-4	62,5	300	3000	400 / 50	6,3	1 ½ x 1 ½	25
MCI 10-5	78	300	3000	400 / 50	6,3	1 ½ x 1 ½	26

		Dimensions (mm)										
Model	B2	B3	H1	H2	L1	L2	L4	L5				
MCI 12-10	158	125	100	206	377	185	100	96				
MCI 12-15	158	125	100	232	408	200	100	96				
MCI 12-20	158	160	100	244	449	200	100	140				
MCI 12-25	158	125	100	212	409	200	100	96				
MCI 12-30	199	160	100	212	469	200	100	140				

PARAMETERS							
	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
MCI 12-10	20	285	1000	230 / 50	6,2	1 ½ x 1 ½	11
MCI 12-15	31	285	1500	230 / 50	9,2	1 ½ x 1 ½	13
MCI 12-20	40	285	1850	400 / 50	4,1	1 ½ x 1 ½	20
MCI 12-25	50	285	2200	400 / 50	4,9	1 ½ x 1 ½	23
MCI 12-30	60	285	3000	400 / 50	6,3	1 ½ x 1 ½	26

	Dimensions (mm)									
Model	B2	B3	H1	H2	L1	L2	L4	L5		
MCI 15-1	158	125	100	214	412	200	100	96		
MCI 15-2	199	160	100	212	448	200	100	140		
MCI 15-3	199	160	100	260	510	235	100	140		
MCI 15-4	228	190	100	296	590	288	130	140		

	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
MCI 15-1	16,5	400	1200	230 / 50	8,2	2 x 2	12
MCI 15-2	33	400	2200	230 / 50	14	2 x 2	21
MCI 15-3	50	400	4000	400 / 50	9,6	2 x 2	29
MCI 15-4	67	400	5500	400 / 50	11,1	2 x 2	35

				(n	nm)				
Model	B2	B3	Н1	H2	L1	L2	L4	L5	
MCI 16-10	158	125	100	212	408	215	130	96	
MCI 16-20	158	125	100	217	439	230	130	96	
MCI 16-30	199	160	100	212	580	230	130	140	
MCI 16-40	199	160	100	212	545	275	175	140	B2

PARAMETERS

Dimensions

	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
MCI 16-10	12,5	450	1000	400 / 50	2,4	2 x 2	13
MCI 16-20	27	450	1500	230 / 50	3,5	2 x 2	16
MCI 16-30	40	450	2200	400 / 50	4,9	2 x 2	22
MCI 16-40	53	450	3000	400 / 50	6,3	2 x 2	27

					nsions nm)			
Model	B2	B3	H1	H2	L1	L2	L4	L5
MCI 20-10	158	125	100	212	408	215	130	96
MCI 20-20	158	125	100	217	439	230	130	96
MCI 20-30	199	160	100	212	500	230	130	140
MCI 20-40	199	160	100	252	561	297	175	140

1700001212105	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
MCI 20-10	14	500	1000	400 / 50	2,4	2 x 2	19
MCI 20-20	26	500	1850	400 / 50	4,1	2 x 2	21
MCI 20-30	43	500	3000	400 / 50	6,3	2 x 2	24
MCI 20-40	60	500	4000	400 / 50	9,6	2 x 2	28

				(n	nm)			
Model	B2	B3	н1	H2	L1	L2	L4	L5
MCI 30-1	199	160	100	217	448	200	100	140
MCI 30-2	199	160	100	260	510	235	100	140
MCI 30-3	228	190	100	295	560	235	100	140
MCI 30-4	228	190	100	295	620	288	130	140

PARAMETERS

Dimensions

	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
MCI 30-1	16,5	600	2200	400 / 50	4,9	2 x 2	10
MCI 30-2	33	600	4000	400 / 50	9,6	2 x 2	24
MCI 30-3	50	600	5500	400 / 50	11,1	2 x 2	38
MCI 30-4	62	600	7500	400 / 50	14,9	2 x 2	52

VERTICAL MULTI-STAGE CENTRIFUGAL PUMP

The pumps are designed to work in pressure boosting systems in civil engineering, industrial applications and agriculture. They are designed for pumping clean water or other non-corrosive, non-flammable and non-explosive liquids of consistency similar to water. Due to compact design, the pump to be installed in various machines that require high pressure water supply. High temperature resistant and reinforced hydraulic components, mechanical seal and thrust bearing allow to pump liquids with temperatures of up to 70oC, as well as to operate in high pressure systems.

APPLICATION:

- Industrial applications:
 - Air conditioning systems
 - Cooling systems
 - Heating systems
 - Industrial washing facilities
 - Fire extinguishing system
 - Water treatment (purification)
 - Increasing pressure in building utility systems
 - Fish-keeping

Households:

- supply of water
- irrigation (including cooperation with sprinklers)

Agriculture:

- Irrigation
- Maintaining pressure in livestock buildings

Operating conditions:

- Liquid temperature: 0-70°C
- Ambient temperature: up to 50°C
- Maximum pressure in the system: up to 1.5 MPa
- Ingress Protection: IP55
- Winding insulation class: 155 (F)

Materials:

- Motor: asynchronous enclosed squirrel-cage with aluminium housing and external cooling. Motors of 3-phase pumps can operate in star (3x400V) or delta (3x230V) connection. Single-phase motors are equipped with a thermal protection mounted in the motor winding.
- Shaft: Stainless steel AISI 304
- Housing: Stainless steel AISI 304
- Impeller: Noryl with increased fibre content in the polymer / Stainless steel AISI 304
- Inlet/outlet Grey cast iron
- Mechanical seal: graphite/silicon carbide/NBR

VERTICAL MULTI-STAGE CENTRIFUGAL PUMP

PARAMETER	S
-----------	---

	Head	Flow	Motor power	Voltage	Amperage	Inlet/outlet)imensions (mn		Weight
Name	(m)	(l/min)	(W)	(V)	(A)	(inch)	L1	н	H1	(kg)
VMH 1500/5	66	125	1500	230	9,2	1 x 1	140	490	201	20
VMH 1500/6	80	125	1500	230	9,2	1 x 1	140	514	225	23
VMH 1500/8	106	125	2200	230	14	1 x 1	140	562	273	26
VMH2200/6	90	200	2200	230	14	1½ x 1¼	116	555	239	20
VMH2200/8	120	200	3000	400	10,5/6	1½ x 1¼	142	668	288	30
VMH2200/10	148	200	4000	400	15,9/9,2	1½ x 1¼	142	718	337	32
VMH4000/7	74	400	4000	400	13,6/7,8	1½ x 1¼	148	720	350	32
VMH4000/8	85	400	4700	400	15,9/9,2	1½ x 1¼	148	760	410	33

VERTICAL MULTI-STAGE PUMPS

CV, CVF, CVL

STAINLESS STEEL VERTICAL MULTI-STAGE CENTRIFUGAL IN-LINE PUMPS

VERTICAL MULTI-STAGE PUMPS

CV

The high performance, low noise CV series with reliable sealing has been designed for a wide range of applications.

For pumping clean non-aggressive liquids APPLICATION:

- 1. Drinking and tap/utility water supply systems, including:
 - water supply networks
 - pumping stations
 - booster sets and systems

2. Industrial applications, including:

- industrial cleaning systems: washing / rinsing systems,
- high pressure circulation systems
- boiler rooms
- air conditioning systems
- cooling systems
- fire extinguishing systems
- machine lubrication systems
- water supply systems in tall buildings
- water supply systems in tail buildings
 transmission of oil, glycol and coolants
- transmission of oil, glycol
 golf courses
- golf courses

3. Agriculture, including:

- watering systems
- hose reel irrigation machines
- irrigation systems
- fish farms

4. Services:

- laundry rooms
- car washes

Motor (kW)	50 Hz/ LpA (dB(A))
0,37	53
0,55	53
0,75	53
1,1	55
1,5	58
2,2	58
3,0	59
4,0	66
5,5	73
7,5	73
11	75
15	70
18,5	70
22	69
30	73
37	73
45	73

Operating conditions:

- Flow: 0.7-120 m3/h
- Maximum pressure: 32 bar
- Liquid temperature: -20°C / +104°C
- Ambient temperature: +40°C
- Flow range: 0,4~120m3/h
- PH range: PH3~9

Materials:

- 2-phase, 2-pole, asynchronous squirrel-cage motor
 Class F Insulation
- IP55 Ingress Protection
- Impellers stainless steel AISI304 (EN/DIN 1.4301)
- Venturi tubes stainless steel AISI304 (EN/DIN 1.4301)
- Pump shaft stainless steel: AISI420 for CV pumps, AISI431 (EN/DIN 1.4057) for CVF and CVL pumps
- Pump housing stainless steel AISI304 (EN/DIN 1.4301)
- pump inlet/outlet casting for CV pumps: ASTM25B cast iron (EN/DIN EN-JL1030), for CVF pumps: AISI304 cast (EN/ DIN 1.4301), for CVL pumps: AISI304 pressed metal sheet (EN/DIN 1.4301)
- mechanical package seal for standard versions from + 10oC to + 90oC: silicon carbide / tungsten carbide / EPDM

Number of start and stop operations:

- Motor of up to 4kW: Maximum 100 times per 24 hours.
 Motors of 5 5kW and higher: Maximum 20 times per 24
- Motors of 5.5kW and higher: Maximum 20 times per 24 hours

Technical drawing

VERTICAL MULTI-STAGE PUMPS

NR	DESCRIPTION	MATERIAL	NR	DESCRIPTION	MATERIAL
1	Base plate	Cast iron	27	Air plug	SUS304
2	Pump housing	Cast iron	28	Bolt	Zinc
2a	Pump housing	SUS304	28a	Bolt	Zinc
3	Flange	Cast iron	29	Motor frame	HT200
4	Circlip	SUS201	30	Nameplate	Aluminium
5	Drainage	SUS304	31	Threaded pin	Zinc
6	O-ring seal	NBR	31a	Threaded pin	Zinc
ба	O-ring seal	NBR	31b	Threaded pin	Zinc
6b	O-ring seal	NBR	31c	Threaded pin	Zinc
7	Sealing	PTFE	31d	Threaded pin	Zinc
7a	Sealing	PTFE	31e	Threaded pin	Zinc
8	Sealing plate	SUS304	32	Shaft coupling	QT450-10
9	Inlet section	SUS304	33	Screw	Zinc
9a	Inlet section	SUS304	34	Pin	H62
10	Supporting Venturi tube	SUS304	35	Clip sleeve	SUS304
10a	Supporting Venturi tube	SUS304	36	Clip ring	SUS304
11	Venturi tube	SUS304	37	Screw	SUS304
11a	Venturi tube	SUS304	38	Coupling guard	SUS304
12	Nut	Zinc	39	Spring pad	SUS304
12a	Nut	Zinc	40	Outer sleeve	SUS304
12b	Nut	Zinc	41	C-link set	SUS304
13	Driven impeller sleeve	SUS304	42	Motor flange	Cast iron
14	Driven impeller	SUS304	43	Seal	NBR
15	Bearing sleeve	Tungsten carbide	44	Oval flange	Cast iron
15a	Bearing sleeve	Tungsten carbide	45	Mounting cover	SUS304
16	Short sleeve I	SUS304	46	Neck ring	SUS304
16a	Short sleeve ll	SUS304	47	Liner	PTFE
17	Long sleeve	SUS304	48	Support ring	SUS304
17a	Long sleeve	SUS304	49	Nut	SUS304
18	Shaft	SUS431	50	Cone	SUS304
19	Outlet section	SUS304	51	Wear ring for driven impeller	SUS304
19a	Outlet section	SUS304	52	Clip sleeve	SUS304
19b	Outlet section	SUS304	53	Plain bearing	Tungsten carbide
20	Fixed sealing ring	Carbon	54	Gland cover	Cast steel
21	Rotating ring	Tungsten carbide	55	Drain	SUS304
22	Mechanical seal	Carbon/Tungsten carbide/Viton	56	Bearing sleeve	Tungsten carbide SUS304
23	Flexible ring	SUS304	57	Plain bearing	Tungsten carbide
24	Stud bolt	Zinc	58	Rubber foot	Viton
25	Pump cover	SUS304	80	Motor	SUS304
26	Washer	SUS304			

MAXIMUM SYSTEM PRESSUR	E	MAXIMUM INLET PRESSURE			
		CV, CVF, CVL 1 CV, CVF, CVL 1 - 2 > CV, CVF, CVL 1 - 36	10 bar		
		CV, CVF, CVL 2 CV, CVF, CVL 2 - 2 > CV, CVF, CVL 2 - 26	10 bar		
CV, CVF, CVL 1 / 2 / 3 / 4 / 5	25 bar	CV, CVF, CVL 3 CV, CVF, CVL 3 - 2 > CV, CVF, CVL 3 - 29 CV, CVF, CVL 3 - 31 > CV, CVF, CVL 3 - 36	10 bar 15 bar		
		CV, CVF, CVL 4 CV, CVF, CVL 4 - 2 > CV, CVF, CVL 4 - 22	15 bar		
		CV, CVF, CVL 5 CV, CVF, CVL 5 - 2 > CV, CVF, CVL 5 - 16 CV, CVF, CVL 5 - 18 > CV, CVF, CVL 5 - 36	10 bar 15 bar		
CV, CVF, CVL 10 - 1 > CV, CVF, CVL 10 - 12 CV, CVF, CVL 10 - 14 > CV, CVF, CVL 10 - 22	16 bar 25 bar	CV, CVF, CVL 10 CV, CVF, CVL 10 - 1 > CV, CVF, CVL 10 - 6 CV, CVF, CVL 10 - 7 > CV, CVF, CVL 10 - 22	8 bar 10 bar		
CV, CVF, CVL 15 - 1 > CV, CVF, CVL 15 - 10 CV, CVF, CVL 15 - 12 > CV, CVF, CVL 15 - 17	16 bar 25 bar	CV, CVF, CVL 15 CV, CVF, CVL 15 - 1 > CV, CVF, CVL 15 - 3 CV, CVF, CVL 15 - 4 > CV, CVF, CVL 15 - 17	8 bar 10 bar		
CV, CVF, CVL 20 - 1 > CV, CVF, CVL 20 - 10 CV, CVF, CVL 20 - 12 > CV, CVF, CVL 20 - 17	16 bar 25 bar	CV, CVF, CVL 20 CV, CVF, CVL 20 - 1 > CV, CVF, CVL 20 - 3 CV, CVF, CVL 20 - 4 > CV, CVF, CVL 20 - 17	8 bar 10 bar		
CV, CVF 32 - 1 - 1> CV, CVF 32 - 7 CV, CVF 32 - 8 - 2 > CV, CVF 32 - 12 CV, CVF 32 - 13 - 2 > CV, CVF 32 - 14	16 bar 25 bar 30 bar	CV, CVF, CVL 32 CV, CVF 32 - 1 - 1> CV, CVF 32 - 4 CV, CVF 32 - 5 - 2 > CV, CVF 32 - 10 CV, CVF 32 - 11 - 2 > CV, CVF 32 - 14	4 bar 10 bar 15 bar		
CV, CVF 45 - 1 - 1> CV, CVF 45 - 5 CV, CVF 45 - 6 - 2 > CV, CVF 45 - 9 CV, CVF 45 - 10 - 2 > CV, CVF 32 - 13 - 2	16 bar 25 bar 33 bar	CV, CVF, CVL 45 CV, CVF 45 - 1 - 1> CV, CVF 45 - 2 CV, CVF 45 - 3 - 2 > CV, CVF 45 - 5 CV, CVF 45 - 6 - 2 > CV, CVF 45 - 13 - 2	4 bar 10 bar 15 bar		
CV, CVF 64 - 1 - 1> CV, CVF 64 - 5 CV, CVF 64 - 6 - 2 > CV, CVF 64 - 8 - 1	16 bar 25 bar	CV, CVF, CVL 64 CV, CVF 64 - 1 - 1> CV, CVF 64 - 2 - 2 CV, CVF 64 - 2 - 1 > CV, CVF 64 - 4 - 2 CV, CVF 64 - 4 - 1 > CV, CVF 64 - 8 - 1	4 bar 10 bar 15 bar		
CV, CVF 90 - 1 - 1> CV, CVF 90 - 4 CV, CVF 90 - 5 - 2 > CV, CVF 90 - 6	16 bar 25 bar	CV, CVF, CVL 90 CV, CVF 90 - 1 - 1> CV, CVF 90 - 1 CV, CVF 90 - 2 - 2 > CV, CVF 90 - 2 - 3 CV, CVF 90 - 3 > CV, CVF 90 - 6	4 bar 10 bar 15 bar		

NPSH

Name	Power								
Name	(kW)	B1	B2	B1+B2	D1	D2	Weight (kg)		
CV1-2	0,37	262	205	467	133	102/124	23		
CV1-3	0,37	280	205	485	133	102/124	23		
CV1-4	0,37	298	205	503	133	102/124	23		
CV1-5	0,37	316	205	521	133	102/124	23		
CV1-6	0,37	334	205	539	133	102/124	24		
CV1-7	0,37	352	205	557	133	102/124	25		
CV1-8	0,37	370	205	575	133	102/124	25		
CV1-9	0,55	388	205	593	133	102/124	26		
CV1-10	0,55	406	205	611	133	102/124	26		
CV1-11	0,55	424	205	629	133	102/124	27		
CV1-12	0,75	442	205	647	133	102/124	28		
CV1-13	0,75	460	205	665	133	102/124	29		
CV1-15	0,75	496	205	701	133	102/124	30		
CV1-17	1,1	538	241	779	154	111/133	32		
CV1-19	1,1	574	241	815	154	111/133	33		
CV1-21	1,1	610	241	851	154	111/133	34		
CV1-23	1,1	646	241	887	154	111/133	36		
CV1-25	1,5	682/690	241/293	923/983	154/177	111/144,5	43		
CV1-27	1,5	718/726	241/293	959/1019	154/177	111/144,5	44		
CV1-30	1,5	772/780	241/293	1013/1073	154/177	111/144,5	46		
CV1-33	2,2	834	275/293	1109/1127	177	116/144,5	49		
CV1-36	2,2	888	275/293	1163/1181	177	116/144,5	50		

Name	Power	Dimensions (mm)							
Name	(kW)	B1	B2	B1+B2	D1	D2	(kg)		
CV2-2	0,37	262	205	467	133	102	22		
CV2-3	0,37	280	205	485	133	102	22		
CV2-4	0,55	298	205	503	133	102	25		
CV2-5	0,55	316	205	521	133	102	25		
CV2-6	0,75	334	205	539	133	102	27		
CV2-7	0,75	352	205	557	133	102	27		
CV2-9	1,1	394	241	635	154	111	29		
CV2-11	1,1	430	241	671	154	111	29		
CV2-13	1,5	466	241/293	707/759	154	111	32		
CV2-15	1,5	502	241/293	743/795	154	111	32		
CV2-18	2,2	558	275/293	833/851	177	116	38		
CV2-22	2,2	630	275/293	905/923	177	116	43		
CV2-26	3,0	702	293	977	177	116	48		

Name	Power	Dimensions (mm)					
Name	(kW)	B1	B2	B1+B2	D1	D2	(kg)
CV3-2	0,37	262	205	467	133	102	23
CV3-3	0,37	280	205	485	133	102	23
CV3-4	0,37	298	205	503	133	102	24
CV3-5	0,37	316	205	521	133	102	24
CV3-6	0,55	334	205	539	133	102	26
CV3-7	0,55	352	205	557	133	102	26
CV3-8	0,75	370	205	575	133	102	27
CV3-9	0,75	388	205	593	133	102	27
CV3-10	0,75	406	205	611	133	102	28
CV3-17	1,1	430	241	671	154	111	30
CV3-12	2 1,1	448	241	689	154	111	30
CV3-13	3 1,1	466	241	707	154	111	32
CV3-1	5 1,1	502	241	743	154	111	32
CV3-17	1,5	538	241/293	779/831	154	111	36
CV3-19	9 1,5	574	241/293	818/675	154	111	37
CV3-27	2,2	618	275/293	893/911	177	116	40
CV3-23	3 2,2	654	275/293	929/947	177	116	42
CV3-25	2,2	690	275/293	965/983	177	116	44
CV3-27	2,2	726	275/293	1001/1019	177	116	45
CV3-29	2,2	762	293	1037	177	116	46
CV3-37	3,0	798	293	1073	177	116	50
CV3-33	3,0	834	293	1109	177	116	52
CV3-36	3,0	888	293	1163	177	116	54

Name	Power									
Name	(kW)	B1	B2	B1+B2	D1	D2	(kg)			
CV4-2	0,37	262	205	467	133	102	25			
CV4-3	0,37	280	205	485	133	102	25			
CV4-4	0,55	298	205	504	133	102	26			
CV4-5	1,1	322	241	563	154	111	26			
CV4-6	1,1	340	241	581	154	111	28			
CV4-7	1,5	358	241/293	599/651	154	111	33			
CV4-8	1,5	376	241/293	617/669	154	111	33			
CV4-10	2,2	420	275/293	695/713	177	116	35			
CV4-12	2,2	456	275/293	731/749	177	116	35			
CV4-14	3,0	492	275/293	767/785	177	116	38			
CV4-16	3,0	528	275/293	803/821	197	116	38			
CV4-19	4,0	602	305	907	197	148	48			
CV4-22	4,0	656	305	961	197	148	53			

	Power			Dimensions	(mm)			Weight
Name	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)
CV5-2	0,37	280	205	485	-	133	102	23
CV5-3	0,55	307	205	512	-	133	102	23
CV5-4	0,55	334	205	539	-	133	102	25
CV5-5	0,75	361	205	566	-	133	102	25
CV5-6	1,1	394	241	635	-	154	111	29
CV5-7	1,1	421	241	662	-	154	111	31
CV5-8	1,1	448	241	689	-	154	111/144,5	38
CV5-9	1,5	475/483	241/292	716/776	-	154/177	111/144,5	27
CV5-10	1,5	502/510	241/293	743/803	-	154/177	111/144,5	39
CV5-11	2,2	537	275/293	812/830	-	177	116/144,5	40
CV5-12	2,2	564	275/293	839/857	-	177	116/144,5	41
CV5-13	2,2	591	275/293	866/884	-	177	116/144,5	42
CV5-14	2,2	618	275/293	893/911	-	177	116/144,5	43
CV5-15	2,2	645	275/293	920/938	-	177	116/144,5	44
CV5-16	2,2	672	275/293	947/965	-	177	116/144,5	45
CV5-18	3,0	726	293	1019	-	177	116	48
CV5-20	3,0	780	293	1073	-	197	116	49
CV5-22	4,0	854	305	1155	-	197	148	61
CV5-25	4,0	908	305	1213	-	197	148	62
CV5-26	4,0	962	305	1267	-	197	148	64
CV5-29	4,0	1043	305	1348	-	197	148	67
CV5-32	5,5	1145	390	1535	300	275	210	82
CV5-36	5,5	1253	390	1643	300	275	210	85

Name	Power		Dimensions (mm)									
Nume	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)				
CV10-1	0,37	322	205	527	-	133	102	38				
CV10-3	0,75	352	205	557	-	133	102	40				
CV10-3	1,1	388	241	629	-	154	111	43				
CV10-4	1,5	418	241/293	569/711	-	154	111	50				
DC10-5	2,2	456	275/293	731/749	-	177	116	53				
CV10-6	2,2	486	275/293	761/779	-	177	116	55				
CV10-7	3,0	516	293	791	-	177	116	60				
CV10-8	3,0	546	293	818	-	177	116	61				
CV10-9	3,0	576	293	848	-	177	116	63				
CV10-10	4,0	626	305	931	-	197	148	65				
CV10-12	4,4	686	305	991	-	197	148	68				
CV10-14	5,5	761	390	1151	300	275	210	98				
CV10-16	5,5	821	390	1211	300	275	210	100				
CV10-18	7,5	881	390	1271	300	275	210	125				
CV10-20	7,5	941	390	1331	300	275	210	128				
CV10-22	7,5	1001	390	1361	300	275	210	130				

Name	Power		Dimensions (mm)							
Name	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)		
CV15-1	1,1	353	241	594	-	154	111	45		
CV15-2	2,2	406	275/293	681/699	-	177	116	50		
CV15-3	3,0	451	293	726	-	177	116	55		
CV15-4	4,0	516	305	771	-	197	148	60		
CV15-5	4,0	561	305	866	-	197	148	63		
CV15-6	5,5	627	390	1017	300	275	210	93		
CV15-7	5,5	672	390	1062	300	275	210	97		
CV15-8	7,5	717	390	1107	300	275	210	100		
CV15-9	7,5	762	390	1152	300	275	210	102		
CV15-10	11	827	505	1328	350	330	255	145		
CV15-12	11	917	505	1418	350	330	255	150		
CV15-14	11	1007	505	1508	350	330	255	152		
CV15-16	15	1097	505	1598	350	330	255	153		
CV15-17	15	1142	505	1643	350	330	255	165		

Name	Power		Dimensions (mm)									
Name	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)				
CV20-1	1,1	353	241	594	-	154	111	45				
CV20-2	2,2	406	275/293	681/699	-	177	116	50				
CV20-3	4,0	471	305	776	300	197	148	60				
CV20-4	5,5	537	305	842	300	197	148	85				
CV20-5	5,5	582	390	972	300	275	210	88				
CV20-6	7,5	627	390	1017	300	275	210	92				
CV20-7	7,5	672	390	1062	300	275	210	95				
CV20-8	11	737	505	1242	350	330	255	135				
CV20-10	11	827	505	1332	350	330	255	141				
CV20-12	15	917	505	1422	350	330	255	148				
CV20-14	15	1007	505	1512	350	330	255	153				
CV20-16	18,5	1097	560	1657	350	330	255	173				
CV20-17	18,5	1142	560	1702	350	330	255	176				

F(DIN)

PN16-25-40/DN65

240

298

¢75

25

<u>4-ø18</u>

ø145

	Name	Power	Dimensions (mm)							
	name	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)	
	CV32-1-1	1,5	455	241/293	696/784	-	154	111	62	
	CV32-1	2,2	455	275/293	730/748	-	177	116	63	
	CV32-2-2	3,0	525	293	800	-	177	116	77	
	CV32-2	4,0	525	305	830	-	197	148	88	
	CV32-3-2	4,0	595	305	900	-	197	148	107	
	CV32-3	5,5	620	390	1010	300	275	210	107	
	CV32-4-2	7,5	690	390	1080	300	275	210	119	
	CV32-4	7,5	690	390	1080	300	275	210	120	
	CV32-5-2	11	915	505	1420	350	330	255	173	
	CV32-5	11	915	505	1420	350	330	255	174	
	CV36-6-2	11	985	505	1490	350	330	255	180	
	CV36-6	11	985	505	1490	350	330	255	181	
	CV32-7-2	15	1055	505	1560	350	330	255	210	
	CV32-7	15	1055	505	1560	350	330	255	211	
	CV32-8-2	15	1125	505	1630	350	330	255	213	
	CV32-8	15	1125	505	1630	350	330	255	214	
	CV32-9-2	18,5	1195	560	1750	350	330	255	230	
	CV32-9	18,5	1195	560	1750	350	330	255	230	
5	CV32-10-2	18,5	1265	560	1820	350	330	255	235	
5	CV32-10	18,5	1265	560	1820	350	330	255	236	
	CV32-11-2	22	1335	590	1925	350	380	280	275	
- <i>¢</i> 18	CV32-11	22	1335	590	1925	350	380	280	276	
¢145	CV32-12-2	22	1405	590	1995	350	380	280	280	
	CV32-12	22	1405	590	1995	350	380	280	281	
	CV32-13-2	30	1475	660	2135	400	420	305	400	
_4-ø14	CV32-13	30	1475	660	2135	400	420	305	400	
	CV32-14-2	30	1525	660	2185	400	420	305	405	
	CV32-14	30	1525	660	2185	400	420	305	405	

F(DIN) PN16-25-40/DN80	
	1

Name	Power			Dimensions (Weight
	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)
CV45-1-1	3,0	561	293	876	-	197	165	86
CV45-1	4,0	561	315	876	-	260	165	86
CV45-2-2	5,5	641	430	1071	300	260	208	102
CV45-2	7,5	641	430	1071	300	260	208	102
CV45-3-2	11	826	490	1316	350	330	255	175
CV45-3	11	826	490	1316	350	330	255	175
CV45-4-2	15	906	490	1396	350	330	255	187
CV45-4	15	906	490	1396	350	330	255	187
CV45-5-2	18,5	986	550	1536	350	330	255	208
CV45-5	18,5	986	550	1536	350	330	255	208
CV45-6-2	22	1066	590	1656	350	360	285	251
CV45-6	22	1066	590	1656	350	360	285	251
CV45-7-2	30	1146	660	1806	400	420	310	315
CV45-7	30	1146	660	1806	400	420	310	315
CV45-8-2	30	1226	660	1886	400	420	310	319
CV45-8	30	1226	660	1886	400	420	310	319
CV45-9-2	30	1306	660	1966	400	420	310	323
CV45-9	37	1306	660	1966	400	420	310	323
CV45-10-2	37	1386	660	2046	400	420	310	347
CV45-10	37	1386	660	2046	400	420	310	347
CV45-11-2	45	1466	700	2166	450	470	345	413
CV45-11	45	1466	700	2166	450	470	345	413
CV45-12-2	45	1546	700	2246	450	470	345	417
CV45-12	45	1546	700	2246	450	470	345	417
CV45-13-2	45	1626	700	3226	450	470	345	421

	Name	ľ
	CV64-1-1	
F(DIN) PN25-40/DN100	CV64-1	
	CV64-2-2	
	CV64-2-1	
8-\$22	CV64-2	
	CV64-3-2	
	CV64-3-1	
	CV64-3	
\$ <u>9</u> 266 4- <i>φ</i> 14	CV64-4-2	
331 →	CV64-4-1	
	CV64-4	
F(DIN)	CV64-5-2	
PN16/DN100	CV64-5-1	
	CV64-5	
8-ø18	CV64-6-2	
	CV64-6-1	
	CV64-6	
	CV64-7-2	
	CV64-7-1	
4-φ14 4-φ14	CV64-7	
< <u>331</u> →	CV64-8-2	
	CV64-8-1	

Nama	Power			Dimensions (n	nm)			Weight
Name	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)
CV64-1-1	4,0	561	335	896	-	230	188	105
CV64-1	5,5	561	430	991	300	260	208	110
CV64-2-2	7,5	644	430	1074	300	260	208	120
CV64-2-1	11	754	490	1244	350	330	255	155
CV64-2	11	754	490	1244	350	330	255	155
CV64-3-2	15	836	490	1326	350	330	255	195
CV64-3-1	15	836	490	1326	350	330	255	195
CV64-3	18,5	836	550	1386	350	330	255	205
CV64-4-2	18,5	919	550	1469	350	330	255	208
CV64-4-1	22	919	590	1509	350	360	285	260
CV64-4	22	919	590	1509	350	360	285	260
CV64-5-2	30	1001	660	1661	400	420	310	345
CV64-5-1	30	1001	660	1661	400	420	310	345
CV64-5	30	1001	660	1661	400	420	310	345
CV64-6-2	30	1084	660	1744	400	420	310	350
CV64-6-1	37	1084	660	1744	400	420	310	370
CV64-6	37	1084	660	1744	400	420	310	370
CV64-7-2	37	1166	660	1826	400	420	310	375
CV64-7-1	37	1166	660	1826	400	420	310	375
CV64-7	45	1166	700	1866	450	420	310	435
CV64-8-2	45	1248	700	1948	450	470	345	440
CV64-8-1	45	1248	700	1948	450	470	345	440

F(DIN)
PN25-40/DN100

¢156

45

¢156

45

ΡN

		Power			Dimensions (n	nm)			Weight
8-ø22	Name	(kW)	B1	B2	B1+B2	D	D1	D2	(kg)
	CV90-1-1	5,5	571	430	1001	300	260	208	120
\$190 \$235	CV90-1	7,5	571	430	1001	300	260	208	122
280 4 -ø14	CV90-2-2	11	773	490	1263	350	330	255	165
348	CV90-2	15	773	490	1263	350	330	255	198
	CV90-3-2	18,5	865	550	1415	350	330	255	212
F(DIN) I16/DN100	CV90-3	22	865	590	1455	350	360	285	265
	CV90-4-2	30	957	660	1417	400	420	310	348
8-\$18	CV90-4	30	957	660	1617	400	420	310	348
\$180 \$220	CV90-5-2	37	1049	660	1709	400	420	310	375
	CV90-5	37	1049	660	1709	400	420	310	375
280 <u>4-<i>φ</i>14</u> 348	CV90-6-2	45	1141	700	1841	450	470	345	438
	CV90-6	45	1141	700	1841	450	470	345	438

SURFACE PUMPS

	Power	Amperage	Head	Flow			DIMENSIONS							
Name	(W)	(A)	(m)	(m ³ /h)	Inlet/outlet	Voltage	А	В	D	L1	L2	н	H1	d
COLP 1 -150T	60	0,3	4,5	2,5	G ½	400V/50Hz	139	161	20	ø 90	70	369	153	ø 8
COLP 1 -180T	60	0,3	4,5	2,5	G ½	400V/50Hz	139	161	20	ø 90	70	399	183	ø 8
COLP 2 -180T	100	0,4	9	4	G ½	400V/50Hz	150	162	20	ø 115	80	398	182	ø 10
COLP 2 -250T	100	0,4	9	4	G ½	400V/50Hz	150	162	20	ø 115	80	468	252	ø 10
COLP 3 -180T	150	0,5	7,5	7	G 3⁄4	400V/50Hz	178	172	26,5	ø 135	98	398	180	ø 10
COLP 3 -250T	150	0,5	7,5	7	G 3⁄4	400V/50Hz	178	172	26,5	ø 135	98	468	250	ø 10
COLP 4 -250T	250	0,7	9,5	9	G 1	400V/50Hz	178	172	26,5	ø 135	98	468	250	ø 10
COLP 4 -280T	250	0,7	9,5	9	G 1	400V/50Hz	178	172	26,5	ø 135	98	498	280	ø 10

SUBMERSIBLE PUMPS TAUCHPUMPEN PONOŘITELNÁ ČERPADLA POMPE INUNDABILE ПОГРУЖНЫЕ НАСОСЫ

IP submersible plastic pumps designed for pumping clean and slightly contaminated water. The pumps have an outlet connection to which discharge hoses of different diameters can be connected depending on the user's requirements. Small size and light weight make the pumps exceptionally easy to operate and maintain. The pumps are equipped with float switches for automatic pump control. All pumps are supplied with thermal protection mounted in the motor winding.

IP INOX pumps have a similar design to IP pumps but their housing is made of high quality AISI 304 stainless steel.

APPLICATION:

Draining flooded rooms, swimming pools, wells. The pumps can be used in waterholes and for obtaining water from intakes with water surface close to the ground level. The pumps can also be used for pumping rainwater.

- Maximum liquid temperature 35°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- IP Housing: Technopolymer
- IP INOX Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Mechanical seal: ceramics/carbon
- · Rotational speed of the electric motor: 2850RMP

PARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
IP 400	5	125	400	230	30	1,25	1 - 1½	23/31	3,8
IP 550	7	175	550	230	30	1,6	1 - 1½	23/31	4
IP 750	8	210	750	230	30	2,15	1 - 1½	23/33	4,3
IP 900	9	235	900	230	30	2,5	1 - 1½	23/34	4,6
IP 1100	9,5	250	1100	230	30	2,75	1 - 1½	23/33	5
IP 550 INOX	7	165	550	230	30	1,6	1 - 1½	23/34	5,4
IP 750 INOX	8	215	750	230	30	2,15	1 - 1½	23/36	5,8
IP 900 INOX	9	235	900	230	30	2,5	1 - 1½	23/37	6,1
IP 1100 INOX	9,5	250	1100	230	30	2,75	1 - 1½	23/38	6,3

▲ Flow/Head

IPE 400 - a submersible plastic pump designed for pumping clean and slightly contaminated water. The pumps have an outlet connection to which discharge hoses of different diameters can be connected. IPE400 is equipped with an electronic float/probe so the pump can be used in narrow wells. Small size and light weight make the pumps exceptionally easy to operate and maintain. All pumps are supplied with thermal protection mounted in the motor winding.

IPK 400 - the pump has a similar design to IPE pumps but the switch is not based on the probes but on the float operating in a vertical position inside a special channel. Like IPE pump, it can be placed in a narrow well, which may not be possible with IP pumps due to a float switch connected with a 30 cm cable, which increases the diameter of the pump.

APPLICATION:

Draining flooded rooms, swimming pools, wells. The pumps can be used in waterholes and for obtaining water from intakes with water surface close to the ground level. The pumps can also be used for pumping rainwater.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- IPE / IPK
- Housing: Technopolymer
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Mechanical seal: ceramics/carbon
- Rotational speed of the electric motor: 2850RMP

Name	Head Flow Motor power (m) (l/min) (W)			Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
IPE 400	5	125	400	230	30	3	1 - 1½	23/39	4
IPK 400	5	125	400	230	30	3	1 - 1½	26/39	4,5

IPC 550

A submersible plastic pump designed for pumping clean and slightly contaminated water. IPC 550 pump has a threaded outlet connection with a built-in non-return valve to which 3 different adapters can be attached in order to adapt the outlet diameter to individual requirements. The pumps have a cooling jacket so they do not have to be fully submerged. After removing the suction filter, water can be pumped-off down to 1 mm. Pumping can start at above 5 mm water level. Like IPE and IPK pumps, the IPC 550 pump is equipped with an integrated switch so it can be used in narrow wells. An additional advantage is the option to select the automatic or manual operating mode. Like IPE and IPK pumps, all pumps are supplied with thermal protection mounted in the motor winding.

APPLICATION:

f

m

Flow/Head

Draining flooded rooms, swimming pools, wells. The pumps can be used in waterholes and for obtaining water from intakes with water surface close to the ground level. The pumps can also be used for pumping rainwater.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- **Class B Insulation**
- Operating mode continuous
- Protection IP68

Materials:

- IP Housing: Technopolymer
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Mechanical seal: ceramics/carbon

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
IPC 550	6	100	550	230	5	2.4	11⁄2	20/31	4

105 mm diameter vibration pumps for irrigation. Due to their high efficiency, NEMO and VM60 submersible vibration pumps are perfect for irrigation with clean water. Despite the small size, the pump design based on solenoids allows creating high pressure required for irrigation. Due to their compact size and low weight, vibration pumps are very popular among allotment gardeners. Pumps are equipped with a 10 m power cable. Pump housing is made of aluminium. Compact-size Nemo and VM60 pumps can operate even in small wells. The minimum diameter of a drilled well in which the pump can be used is 120 mm.

APPLICATION:

Supply of water to small holiday houses and irrigation of gardens.

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
VM 60	60	17	250	230	3,5	³ /8	105/180	4
NEMO	80	17	250	230	3,5	1⁄2	105/180	4

MULTI IP 800 INOX MULTI IP AUTO

Multi IP 800 INOX

High pressure submersible pumps designed for irrigation. The pumps have a stainless steel housing and multi-stage hydraulics. The pumps have a cooling jacket so they do not have to be fully submerged. A filter screen fitted in the bottom of the pump allows water to be pumped down to 5cm. Multi IP 800 INOX is equipped with a float switch for automatic pump control. Like IPE and IPK pumps, all pumps are supplied with thermal protection mounted

Multi IP 1000 AUTO

Pumps with the same hydraulic components as Multi IP 800 INOX but with the the built-in pump operation controller instead of the float switch. When the outlet valve is closed, the pump is stopped and goes into standby mode maintaining a constant pressure in the system. When the outlet valve is opened, the pump will automatically start.

APPLICATION:

1

40

35

30

Flow/Head

MULTI IP AUTO

Supplying houses with water from ring wells and for garden irrigation systems. The pumps can be used in waterholes and for obtaining water from intakes with water surface close to the ground level.

- Maximum liquid temperature 35°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Motor housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Mechanical seal: ceramics/carbon/NBR
- Rotational speed of the electric motor: 2850RMP

 <i>"</i>									
Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
MULTI IP 800 INOX	30	92	800	230	0,5	3,5	1/1½	17/36	8,25
MULTI IP AUTO	40	100	1000	230	0,5	5,2	1/1½	17/53	10

Name	Head (m)	Flow Motor power (Umin) (W)		Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
MULTI IP 1000 INOX	34	100	1000	230	0,5	3,7	11⁄2	18/41	10
MULTI IP 1200 INOX	44	105	1200	230	0,5	4,8	11⁄2	18/41	11

High-pressure submersible pumps designed for pumping clean and slightly contaminated water. Due to the high head, the pumps are used in agriculture, for irrigation. Design and materials used allow pumping water that contain small amounts of mechanical impurities with maximum particle diameter of 1 mm. The pumps should not pump water with sand. H-SWQ 1500 and H-SWQ 1800 pumps are equipped with a float switch for automatic pump control. The H-SWQ 1800 pump impellers are made of durable plastic, H-SWQ 1500 and H-SWQ 2200 pumps impellers are made of stainless steel. All pumps are equipped with thermal protection mounted in the motor winding.

APPLICATION:

Irrigation and drainage in agriculture, supply of water to households and agricultural holdings from ring wells, lakes and rivers, irrigation of gardens. Draining flooded rooms, houses, garages and premises.

PARAMETERS												
Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)			
H-SWQ 1500	38	200	1500	230	5	7,7	1½	18/47	15,5			
H-SWQ 1800	53	270	1800	230	2	12	2	27/66	27			
H-SWQ 2200	66	170	2200	230	2	15,5	2	19,5/74	29			

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class B Insulation (F: H-SWQ 1800)
- Operating mode continuous
- Protection IP68

Materials:

- Motor housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- H-SWQ 1800 impeller: Noryl
- H-SWQ 1,5 Impeller: stainless steel AISI 304
- H-SWQ 2,2 Impeller: stainless steel AISI 304
- Mechanical seal: ceramics/carbon/NBR •

Submersible pumps designed for pumping clean and slightly contaminated water. Due to the top quality stainless steel design, the pumps ensure long-term and reliable operation. The motor is equipped with thermal protection mounted in the winding. The pumps have a cooling jacket so that they do not have to be fully submerged. Compared to other SWQ pumps, the F marked pump provides a very high flow of up to 830 l/min. All pumps except the SWQ180 have impellers made of stainless steel and are equipped with float switches for operation control. Due to small size (12 cm diameter), the SWQ180 pumps can be used to extract water from small, narrow wells. The pumps do not have a float.

APPLICATION:

Pumping rainwater and surface water from ponds, lakes and rivers, supply of water to waterholes. Draining flooded rooms, houses, garages and premises, management of fish farms.

- Operating conditions:
 - Maximum liquid temperature 40°C
 - Maximum ambient temperature 40°C
 - Thermal protection: yes
 - Class F Insulation
 - Operating mode continuous
 - Protection IP68
 - Water PH: 4-10

Materials:

- Motor housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Mechanical seal: ceramics/carbon/NBR
- Rotational speed of the electric motor: 2850RMP

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
SWQ 180	5,5	70	180	230	2	0,7	3⁄4	12/16	3,5
SWQ 750	18	220	750	230	5	4,6	2	18/38	12,5
SWQ 1100	14	235	1100	230	5	6	2	17/40	13
F-SWQ 1500	10	830	1500	230	5	7,7	2	19/41	15

Submersible pumps designed for pumping clean and slightly contaminated water. The motor housing is made of aluminium and the motor is equipped with thermal protection mounted in the winding. High pressure is a special feature of the WQX series pumps. Pump operation is controlled by a float switch. The WQX 250 are available with and without the float switch.

APPLICATION:

Pumping rainwater and surface water from ponds, lakes and rivers, supply of water to waterholes. Draining flooded rooms, houses, garages and premises.

1 Flow/Head

WQX 1100

m

- Operating conditions:
 - Maximum liquid temperature 30°C
 - Maximum ambient temperature 40°C
 - Thermal protection: yes
 - **Class B Insulation**
 - . Operating mode - continuous
 - Protection IP68
 - Water PH: 5-8 •

Materials:

- Motor housing: Aluminium
- Shaft and rotor: stainless steel AISI 304
- Impeller: Aluminium
- . Mechanical seal: ceramics/carbon/NBR

1	PARAMETERS												
	Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)			
	WQX 250	12	100	250	230	3	2	1	19/38	6			
	WQX 550	20	130	550	230	3	3,8	1	20/40	8,5			
	WQX 750	35	150	750	230	3	5,2	1	24/40	10			
	WQX 1100	35	250	1100	230	3	6,4	11/2	26/45	13			

Submersible pumps designed for pumping sewage and water from flooded premises. The pump is available with a float switch for automatic operation control or without the float switch. Threaded outlet connection and a set of adapters provide connection of the discharge hose with a hose clamp or fast-connection coupling. Magnum pumps are equipped with thermal protection mounted in the motor winding. The motor housing is made of aluminium and the impeller is made of cast iron. Magnum 2500 and 2900 pumps are available with and without the float switch.

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes

PARAMETERS Head (m) Flow (I/min) Motor po (W) Voltage (V) Impeller pass (mm) Weigh (ka) Name Dia/H (A) (inch) Magnum 2500 9 135 250 230 30 3,0 11⁄2 23/36 6 Magnum 2900 11 300 550 230 35 4,2 2 26/40 12 Magnum 3750 16 450 750 230 35 6,1 2 26/41 14 Magnum 4500 20 500 1500 230 40 10 2 26/47 18

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- **Class B Insulation**
- Operating mode continuous
- Protection IP68
- Water PH: 5-8

Materials:

- Motor housing: Aluminium
- Body: grey cast iron

Submersible pumps designed for pumping sewage, dirty water, and water from flooded premises. The pumps are equipped with float switches for automatic pump control. Threaded outlet connection and a set of adapters provide connection of the discharge hose with a hose clamp or fast-connection coupling. WQF pumps are equipped with thermal protection mounted in the motor winding. The motor housing is made of AISI304 stainless steel, and the impeller is made of grey cast iron.

APPLICATION:

Flow/Head

1

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

- Maximum liquid temperature 35°C
 - Maximum ambient temperature 40°C
 - Thermal protection: yes
 - **Class B Insulation**
 - Operating mode continuous
 - Protection IP68 •
 - Water PH: 5-9

Materials:

- Motor housing: stainless steel AISI 304
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
WQF 180	6	150	180	230	20	1,75	1	17/37	8
WQF 250	8	170	250	230	20	2,6	1	17/39	9
WQF 550	11	320	550	230	35	4,6	2	25/45	15
WQF 750	14	450	750	230	35	6,7	2	25/47	18,1
WQF 1100	15	500	1100	230	35	9,1	2	26/48	21

Submersible pumps designed for pumping sewage, dirty water, and water from flooded premises. SN-450 pump is made of cast iron with VORTEX-type impeller. It can pump water with mechanical impurities with particle diameter of up to 20 mm. The pump is equipped with a vertical float switch for easy automatic operation in 25 cm diameter wells. SN-450 pump is equipped with thermal protection mounted in the motor winding.

APPLICATION:

1

Pumping sewage from domestic septic tanks, draining flooded rooms, houses, garages and premises and pumping water from narrow well and canals. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Operating conditions:

- Maximum liquid temperature 35°C
 - Maximum ambient temperature 40°C
 - . Thermal protection: yes
 - **Class B Insulation**
 - Operating mode continuous •
 - Protection IP68
 - Water PH: 5-8

Materials:

- Motor housing: grey cast iron
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP

Name	Head	Flow	Motor power	Voltage	Impeller passage	Amperage	Inlet/outlet	Dimensions Dia/H	Weight
	(m)	(l/min)	(W)	(V)	(mm)	(A)	(inch)	(cm)	(kg)
SN- 450	7	250	450	230	20	2,5	2	23/40	11,5

Submersible pump with a 40mm passage Vortex impeller for pumping sewage, dirty water and water from flooded rooms. SWQ SEPTIC pumps are made of stainless steel and cast iron in order to withstand the adverse sewage environment. Pump outlet connection provides connection of the discharge hose with a hose clamp or fast-connection coupling. These pumps are widely used in agriculture. The SWQ SEPTIC pump is equipped with thermal protection mounted in the motor winding and a float switch for operation control.

APPLICATION:

Flow/Head

1

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Operating conditions:

- Maximum liquid temperature 40°C
 - Maximum ambient temperature 40°C
 - Thermal protection: yes
 - **Class F Insulation**
 - Operating mode continuous
 - Protection IP68
- Water PH: 4-10

Materials:

- Motor housing: stainless steel AISI 304
- Body: grey cast iron
- . Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron

Name	Head (m)	Flow Motor power (I/min) (W)		Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
SWQ SEPTIC	9	450	1100	230	40	7,7	2	30/48	25

Professional submersible sewage pumps with two-channel impeller. The BIG 1500 pump is available as 230 V ~/50 Hz version, BIG 2200 - as 400 V ~ 3 / 50 Hz. The impeller design reduces the risk of its clogging and ensures pumping of medium containing solids with maximum particle diameter of 50 mm. The BIG 1500 pump is equipped with a float switch for operation control. Single-phase pumps are supplied with thermal protection mounted in the motor winding. Due to the high quality materials used and the durable design, the pumps can be used in industrial applications.

APPLICATION:

Flow/Head

1

Pumping rainwater and surface water. Draining sewage in buildings, retail facilities and manufacturing plants, in industrial cooling or process water systems. Used in agriculture for draining and irrigation.

Operating conditions:

- Maximum liquid temperature 40°C Maximum ambient temperature 40°C •
- Thermal protection: yes
- . **Class F Insulation**
- Operating mode continuous •
- Protection IPX8
- Water PH: 5-9 •
- · Liquid density: 1.2x10^3kg/m^3

Materials:

- Motor housing: grey cast iron
- Body: stainless steel AISI 304
- · Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Rotational speed of the electric motor: 2850RMP

Name	Head	Flow	Motor power	Voltage	Impeller passage (mm)		Inlet/outlet (mm)		Dimensions (cm)		Weight
Name	(m)	(l/min)	(W)	(V)				A	В	с	(kg)
BIG 1500	14	666	1500	230	50	8,8	75	349	270	520	37
BIG 2200	19	800	2200	400	50	5,4	80	349	270	520	43

FLOOD PUMP

Professional submersible pump compliant with the most demanding European standards, intended for customers using drainage pumps in their professional work. Due to the use of a closed impeller, the pump can pump clean and slightly contaminated water. With its 1500 W motor, 3-inch outlet, and maximum flow of up to 1400l/min, as well as a relatively low weight, the pump can be used to drain flooded houses, premises and garages during minor and major flooding. The pump is equipped with a float switch for operation control and thermal protection mounted in the motor winding.

APPLICATION:

Pumping rainwater and surface water. Drainage of flooded households, agriculture farms, premises and garages. Pumping cooling or process water in industrial systems. Used in agriculture for draining and irrigation. The pump can be used in fish farms.

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- **Class F Insulation** .
- Operating mode continuous
- Protection IP68
- Water PH: 5-9
- Liquid density: 1.2x10^3kg/m^3 .

Materials:

- Motor housing: stainless steel AISI 304 •
- Body: grey cast iron
- . Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron •
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

PARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
SWQ 1500 PRO	13,5	1400	1500	230	3	9,5	3	29/54	25

Submersible pump with a 40mm passage Vortex impeller for pumping sewage, dirty water and water from flooded rooms. The pump is compliant with the most demanding European standards, therefore it is intended for customers using such products in their professional work. WQ PRO pumps are made of cast iron in order to withstand the adverse sewage environment. Pump outlet connection provides connection of the discharge hose with a hose clamp or fastconnection coupling. These pumps are widely used in agriculture. The WQ PRO pump is equipped with thermal protection mounted in the motor winding and a float switch for operation control. The WQ 1500 PRO pump is mainly intended for customers in the civil engineering industry, where the top quality and high performance is required. It can also be used in industrial applications.

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Flow/Head

- Operating conditions:
- Maximum liquid temperature 40°C
 - Maximum ambient temperature 40°C
 - Thermal protection: yes
- Class F Insulation
- Operating mode continuous
- Protection IP68Water PH: 5-9
- Water Ph: 5-9

Materials:

- Motor housing: stainless steel AISI 304
- Body: alloy
- · Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron
- · Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP
- · Cable length: 10 m

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Impeller passage (mm)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
WQ 1500 PRO	12	700	1500	230	30	7,8	3	32/50	27

Professional submersible pumps intended for customers who need strong and durable product in their professional work. Due to the top quality materials used, such as stainless steel and cast iron, and very high performance, WQ PROFESSIONAL pumps can operate in demanding conditions and withstand the adverse sewage environment. The pumps are widely used in sewage pumping stations. All pumps feature a factory-mounted float switch for operation control and thermal protection mounted in the motor winding. Additionally, the WQ Professional 1500 pump is equipped with a cutting impeller with 50 mm passage. Discharge hose can be connected to the pump outlet with a hose clamp or fast-connection coupling.

APPLICATION:

Flow/Head

1

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Sewage treatment plants. Occasional renovation works. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Operating conditions:

- Maximum liquid temperature 400C
- Maximum ambient temperature 400C
- Thermal protection: yes .
- **Class F Insulation**
- Operating mode continuous
- Protection IP68
- Water PH: 4-10 .
 - Liquid density: 1.2x10^3kg/m^3

Materials:

- Motor housing: stainless steel AISI 304 •
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304 .
- Impeller: grey cast iron
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Impeller passage (mm)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
WQ 550 PROFESSIONAL	8,5	300	550	230	2	35	2	24/42	15
WQ 750 PROFESSIONAL	8,5	350	750	230	4	35	2	26/52	25,2
WQ 1100 PROFESSIONAL	10	400	1100	230	5,2	35	2	26/54	26,9
WQ 1300 PROFESSIONAL	12	420	1300	230	7	35	2	27/55	29,3
WQ 1500 PROFESSIONAL	17	700	1500	230	9,4	50	2	31/57	32,6

SUBMERSIBLE PUMPS WITH CUTTING SYSTEM BRAK NIEMIECKIEGO PONOŘITELNÁ ČERPADLA S DRTIČEM POMPE INUNDABILE CU CONCASOR ПОГРУЖНЫЕ НАСОСЫ

A series of submersible pumps with cutting system designed for pumping domestic sewage. Operating conditions: In case of flooding, they can be used for draining rooms. The robust construction of the pump made of durable cast iron, the cutting system with a cutting knife and very reasonable price have made the pumps very popular among individual customers. The pumps are equipped with a float switch for automatic operation. To ensure reliable operation, the pumps are equipped with overload protection mounted on the cable. Pump outlet provides connection of the discharge hose with a hose clamp or fast-connection.

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- **Class B Insulation**
- Operating mode continuous
- Protection IP68
- Water PH: 5 9

Materials:

- Motor housing: grey cast iron •
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron
- Cutting knife: grey cast iron/stainless steel AISI 304
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)			
CTR 550	12	300	550	230	4,8	2	25/42	17			
CTR 750	14	350	750	230	6,4	2	25/44	18			
CTR 1100	16	350	1100	230	9	2	26/44	20			
CTR 1500	18	400	1500	230	11	2	26/46	22			

Submersible cast iron pumps with cutting system. The pumps are designed for pumping domestic sewage and draining flooded rooms. In order to minimize the risk of clogging, the pumps are equipped with an exceptionally effective "screw" cutting system. To ensure reliable operation, the pumps have overload protection mounted on the cable. To prevent motor overloading, the protection will stop the pump. The cast iron construction makes the pumps resistant to mechanical damage and chemical corrosion. The pumps are equipped with a float switch for automatic operation control, and the pump outlet provides connection of the discharge hose with a hose clamp or fast-connection. Their robust design and exceptionally effective cutting system have made the Furiatka series one of the most popular pumps with cutting system on the market in Poland.

PUMP TEST: https://youtu.be/25uq0YBIw78

APPLICATION:

Pumping sewage from domestic and agricultural septic tanks, and draining flooded rooms, houses and garages. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes. Domestic sewage treatment plants.

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: ves
- Class B Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 5-9

Materials:

- Motor housing: grey cast iron
- Body: grey cast iron
- · Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron
- Cutting knife: grey cast iron/stainless steel AISI 304
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
FURIATKA 370	8	200	370	230	3	11⁄2	21/40	10
FURIATKA 550	12	300	550	230	5,5	2	25/46	19
FURIATKA 750	13	350	750	230	6,5	2	26/47	19,6
FURIATKA 1100	16	350	1100	230	10	2	25/47	22,9
FURIATKA 1500	18	400	1500	230	12	2	26/48	23,1

Submersible pumps with cutting system designed for pumping domestic sewage. In case of flooding, they can be used for draining rooms. Their robust design and quality materials used (stainless steel, cast iron), the cutting system with a cutting knife, and very reasonable price have made the pumps very popular among individual customers. The pumps are equipped with a float switch for automatic operation. To ensure reliable

operation, the pumps have overload protection mounted on the cable. V 550, V1500 and V2200 pumps incorporate the high efficiency "screw" cutting system. Pump outlet provides connection of the discharge hose with a hose clamp or fast-connection.

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Operating conditions:

- Maximum liquid temperature 40°C •
- Maximum ambient temperature 40°C
- . Thermal protection: yes
- **Class B Insulation**
- Operating mode - continuous
- Protection IP68 •
- Water PH: 5 9

Materials:

- Motor housing: stainless steel AISI 304
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304 •
- Impeller: grey cast iron
- Cutting knife: grey cast iron/stainless steel AISI 304
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP •
- · Cable length: 10 m

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
V370	7,5	130	370	230	3,8	1¼	17/40	10,8
V550	12	300	550	230	5,7	2	25/44	17,5
V1500	18	400	1500	230	12,5	2	26/50	23
V 2200	16	500	1500	230	12	2	26/50	25,2

Stainless steel submersible pumps with cutting system Designed for pumping dirty water and domestic sewage. The risk of clogging has been minimized due to open cutting system. The top quality stainless steel design ensures long-term and reliable operation of the pumps. The motor is equipped with thermal protection mounted in the winding. In addition, the pumps have a float switch for automatic operation control.

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class F Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 4 10

Materials:

•

- Motor housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller/cutting system:
- stainless steel AISI 304
- Mechanical seal: ceramics/carbon/NBR
 Rotational speed of the electric motor: 2850RMP
 - Cable length: 10 m

Name	Head	Head Flow		Voltage	Voltage Impeller passage (V) (mm)	age Amperage (A)	Inlet/outlet (inch)		nsions m)	Weight (kg)
Name	(m)		(V)	н				В		
SWQ 1300	10	417	1300	230	25	7	2	480	250	12,5
SWQ 2200	18	333	2200	230	25	9	2	600	320	14,5

Professional submersible pump with cutting system. The pumps are designed for pumping domestic sewage and draining flooded rooms. In order to minimize the risk of clogging, the pumps are equipped with an exceptionally effective three-channel "screw" cutting system. To ensure reliable operation, the pumps have overload protection mounted in the motor winding. To prevent motor overloading, the protection will stop the pump. The construction made of cast iron, alloy and stainless steel makes the pumps resistant to mechanical damage and chemical corrosion. The pumps are equipped with a float switch for automatic operation control, and the pump outlet provides connection of the discharge hose with a hose clamp or fast-connection.

APPLICATION:

Pumping sewage from domestic and agricultural septic tanks, and draining flooded rooms, houses, garages and premises. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes. Domestic sewage treatment plants.

Flow/Head

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- · Thermal protection: yes
- Class B Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 5-9

Materials:

- Motor housing: cast iron
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron
- Cutting knife: grey cast iron/stainless steel AISI 304
- Mechanical seal: ceramics/graphite/NBR
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (cm)	Weight (kg)
WQI 15-7-1,1	18	300	1100	230	6	2	27/51	23,7

A series of professional submersible pumps with cutting system designed for customers who need a strong and reliable product in their professional work. The top quality materials used and very high performance makes KRAKEN 1800 pumps suitable for operation in harsh conditions - stainless steel and cast iron design ensures the pumps withstand the adverse sewage environment. These pumps are widely used in sewage pumping stations. Pump operation is controlled by the factory-mounted float switch. KRAKEN 1800 is equipped with a multi-channel disk cutting system in order to minimize the risk of clogging. KRAKEN 1800 DF has an exceptionally effective two-channel screw cutting system. The motors with Class F winding insulation are additionally equipped with thermal protection mounted in the winding. Both models are supplied with flanges for connecting pipes or fast-connection, and an adapter for connecting 2″ discharge hose with a hose clamp. The pumps are available as single-phase 230V ~/ 50Hz versions, with a float switch, and 3-phase 400V ~ 3 / 50Hz version.

KRAKEN DF can be supplied with a guide rail system for installation in pump stations. The guide rail system is sold separately.

PUMP TEST: https://youtu.be/srPLsalKsqM

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Sewage treatment plants. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

		_		Valtaga	A	Inlet/outlet				
Name	Head (m)			(inch))	Głębokość	Szerokość	Height	Weight (kg)		
KRAKEN 1800	21	233	1800	230/400	9,5/4,2	2	317	190	513	34
KRAKEN 1800 DF	25	350	1800	230/400	9,5/4,2	2	343	198	500	35

PROFESSIONAL SUBMERSIBLE PUMPS WITH CUTTING SYSTEM

Ø**80** 15 (ϕ) 022 Ø**16**3 11 130

Operating conditions:

- Maximum liquid temperature 40°C . .
 - Maximum ambient temperature 40°C
- Thermal protection: yes .
- Class F Insulation
- Operating mode continuous Protection IP68
- Water PH: 4-10
- . Liquid density: 1.2x10^3kg/m^3

Materials:

- Motor housing: stainless steel AISI 304
- . Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- . Impeller: grey cast iron
- Mechanical seal: ceramics/graphite/NBR
- Cutting knives: grey cast iron/stainless steel AISI 304 .
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m •

PROFESSIONAL SUBMERSIBLE PUMPS WITH CUTTING SYSTEM

KRAKEN 1800 DF

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class F Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 4-10
- Liquid density: 1.2x10^3kg/m^3

Materials:

- Motor housing: stainless steel AISI 304
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron
- Mechanical seal: ceramics/graphite/NBR
- Cutting knifes: grey cast iron/stainless steel AISI 304
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

UP 60/80

PROFESSIONAL SUBMERSIBLE PUMPS WITH CUTTING SYSTEM

HIGH-PRESSURE SUBMERSIBLE SEWAGE PUMP

The UP60/80 pumps are equipped with a two-stage hydraulics to increase the maximum pressure. An important feature of KRAKEN 1800 is a multi-channel disk cutting system designed to minimize the risk of clogging. In addition, the outlet is threaded in order to connect a pipeline or fast connection. The pump is supplied with thermal protection mounted in the motor winding.

APPLICATION:

The pump is designed for operating in pressure sewage systems.

Operating conditions:

- Maximum liquid temperature 50°C (60)
- Maximum ambient temperature 40°C
- Thermal protection: yes
- **Class F Insulation**
- Operating mode continuous
- Protection IP68
- Water PH: 4-10
- Liquid density: 1.2x103kg/m3

Materials:

- Motor housing: stainless steel AISI 304
- Body: ASTM cast iron
- Shaft and rotor: stainless steel AISI 420
- Impeller: Stainless steel AISI 440
- Mechanical seal: SiC-SiC
- Cutting knives: Stainless steel AISI 440
- Rotational speed of the electric motor: 2850RMP

MARAMETERS

FANAMETENS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								"""""""""""""""""""""""""""""""""""""""
	Head	Flow	Motor power	Voltage	Amperage	aae Inlet/outlet	Dime (m	Weight (kg)	
Name	(m)	(l/min)	(W)	(V)	(A)	(inch))	HEIGHT BASE-PLATE		
UP 60/80	60	80	1500	230	12	11⁄4	550	250	31,5
SUBMERSIBLE PUMPS WITH CUTTING SYSTEM

The pumps have an additional chamber in the hydraulic section to increase the maximum pressure generated by the pump. UP-H pumps come with a multi-channel cutting system. In addition, the outlet is threaded in order to connect a pipeline or fast connection. The pumps are available as 3-phase 400V ~ 3 / 50Hz version. The pumps have overload protection on the cable.

APPLICATION:

The pumps are designed to operate in pressure sewage systems, for pumping sewage from domestic waste tanks and draining flooded rooms, houses, garages and premises. Sewage treatment plants.

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class F Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 4-10 .
- Liquid density: 1.2x103kg/m3 •

Materials:

- Motor housing: stainless steel AISI 304
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304 .
- Impeller: grey cast iron
- Mechanical seal: ceramics/graphite/NBR
- Cutting knives: grey cast iron/stainless steel AISI 304
- . Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

Name	Head	Flow	Motor power	Voltage	Amperage	Inlet/outlet	Dimensions (mm)		Weight
name	(m)	(l/min)	(kW)	(V)	(A)	(inch))	BASE-PLATE	HEIGHT	(kg)
UP-H 1500	25	420	1,5	230/400	3,5	2	260	520	25
UP-H 2200	32	520	2,2	400	4,7	21⁄2	270	560	31
UP-H 3000	30	600	3,0	400	7,5	21⁄2	385	650	50
UP-H 4000	35	700	4,0	400	11	3	385	650	55

PROFESSIONAL SUBMERSIBLE PUMPS WITH CUTTING SYSTEM

A series of professional submersible pumps with cutting system, designed for customers who need a strong and reliable product in their professional work. The top quality materials used and very high performance makes ZWQ pumps suitable for operation in harsh conditions. These pumps are widely used in sewage pumping stations. Single-phase pumps have a float switch for operation control. All pumps are equipped with a three-channel cutting system integrated with the impeller in order to minimize the risk of clogging. All ZWQ pumps are suitable for installation with a guide rail system. The motors have Class F winding insulation and single-phase versions are additionally equipped with thermal protection mounted in the winding. Flanges for connecting pipes or fast-connection. The pumps are available as single-phase 230V ~/ 50Hz versions with a float switch, and 3-phase 400V ~ 3 / 50Hz version.

The pumps have bearings manufactured by NSK in Japan.

The pumps can be supplied with guide rail systems for installation in pump stations. The guide rail system is sold separately.

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Sewage treatment plants. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class F Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 4-10
- Liquid density: 1.2x103kg/m3

Materials:

- Motor housing: cast iron
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron
- Mechanical seal: ceramics/graphite/NBR
- Cutting knives: grey cast iron/stainless steel AISI 304
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

MARAMETERS

Name	Head (m)	Flow (I/min)	Motor power (kW)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
ZWQ 1500	15	400	1,1	230	6,5	2	23
ZWQ 1500	16	450	1,5	230/400	8,5/3,8	2	26
ZWQ 1800	18	550	1,8	230/400	8,6/3,9	21⁄2	27
ZWQ 2200	22	700	2,2	400	4,5	21/2	38
ZWQ 3000	24	950	3,0	400	6,3	3	49

PROFESSIONAL SUBMERSIBLE PUMPS WITH CUTTING SYSTEM

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Weight (kg)
ZWQ 4000	26	1200	4,0	400	8,5	3	54
ZWQ 5500	28	1800	5,5	400	11	4	70
ZWQ 7500	31	2000	7,5	400	14,8	4	77

PROFESSIONAL SUBMERSIBLE PUMPS WITH MIXING SYSTEM

A series of professional submersible pumps with mixing system, designed for customers who need a strong and reliable product in their professional work. These pumps are widely used in sewage pumping stations. MWQ pumps are designed for pumping raw

sewage from pumping stations where dense sludge may be deposited. The pumps have a special additional external rotor (agitator) for mixing and splitting heavy sludge. Materials used guarantee long-term and faultless operation. Motor shaft is made of

stainless steel. Motor chamber is sealed with a double SiC/ SiC mechanical seal. The pump uses a multi-channel impeller for pumping large diameter impurities. All MWQ pumps are suitable for installation with a guide rail system. The motors have Class F winding insulation and singlephase versions are additionally equipped with thermal protection mounted in the winding. The pumps have bearings manufactured by NSK in Japan. Flanges for connecting pipes or fastconnection. The pumps are available as single-phase 230V ~/ 50Hz versions with a float switch, and 3-phase 400V ~ 3 / 50Hz version. The pumps can be supplied with guide rail systems for installation in pump stations. The guide rail system is sold separately.

APPLICATION:

Pumping sewage from domestic septic tanks and draining flooded rooms, houses, garages and premises. Sewage treatment plants. Pumping rainwater and surface water from ponds, lakes and rivers, supplying water to waterholes.

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: yes
- Class F Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 5-10
- Liquid density: 1.2x10^3kg/m^3

Materials:

- Motor housing: grey cast iron
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Agitator: Grey cast iron
- Bearings: NSK
- Mechanical seal: Double, ceramics/graphite/ NBR
- Rotational speed of the electric motor:
- 2850RMP
- Cable length: 10 m

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Voltage (A)	Inlet/outlet DN	Agitator working range (mm)	Weight (kg)
MWQ 50/1100	13	300	1,1	230/400	6,5/2,2	50	1200	23
MWQ 50/1500	16	400	1,5	230/400	7,5/2,5	50	1200	27
MWQ 80/2200	22,5	750	2,2	400	4,5	80	1600	37
MWQ 50/3000	31	620	3,0	400	6,1	50	1200	43

PROFESSIONAL SUBMERSIBLE PUMPS WITH MIXING SYSTEM

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Voltage (A)	Inlet/outlet DN	Agitator working range (mm)	Weight (kg)
MWQ 80/3000	26,5	740	3,0	400	6,1	80	1600	43
MWQ 100/5500	23	1320	5,5	400	9,5	100	2000	73
MWQ 150/7500	15	2100	7,5	400	15,4	150	2500	105

GUIDE RAIL SYSTEM

It is a device for mounting submersible pumps in sewage treatment plants on a so-called "rail". In order to mount the pump, it must be equipped with a horizontal flange.

- The set includes:
- 1. Adapter
- 2. Guide rail saddle
- 3. Upper guide rail bracket

Using guide rail system connection - the lifting system allows to remove the pump without disassembling the entire pipeline. It is particularly important in case of heavy pumps, such as ZWQ or MWQ.

Suitable for:

- ZWQMWQ
- Kraken 1800 DF

Guide rail system

05

PROFESSIONAL SUBMERSIBLE SLUDGE PUMPS

KBFU

The KBFU submersible pumps are intended for professional drainage works. Used mainly in civil engineering for draining excavations. The pumps have a durable and solid design. They are suitable for pumping water with sand. The pumps have a cooling jacket in the housing so they do not have to be fully submerged. The top quality materials used and very high performance makes KBFU pumps suitable for operation in harsh environment, such as mines. Double mechanical seal is used to guarantee tightness. 0.45-2.2 kW single-phase pumps are equipped with thermal protection mounted in the winding. The 50-KBFU-0.45 pump has a float switch for automatic pump control.

The 25-KBFU-0.45 pump can pump water down to 3 mm level. KBFU pumps have motors with Class F winding insulation and bearings manufactured by NSK in Japan.

APPLICATION:

Draining flooded rooms, houses, garages and premises. Irrigation. Draining construction sites. Pumping rainwater and surface water from ponds, lakes and rivers. Civil engineering. Mines and quarries. Anywhere there is a risk of high sand content in the pumped water.

Name				Dimensions (mm)			
	d	А	A1	В	D	н	W1
25-KBFU-0,45	25	230		340	220	340	60
50-KBFU-0,45	50	230		360	220	340	60
50-KBFU-0,75	50	273	225	508	220	488	150
50-KBFU-1,5	50	273	225	533	220	513	150
50-KBFU-2,2	50	273	225	558	220	538	150
80-KBFU-1,5	80	235	173	535	216	505	120
80-KBFU-2,2	50	235	173	535	216	505	120
100-KBFU-3,7	100	283	208	642	252	629	150
80-KBFU-5,5	80	283	208	671	252	590	150
150-KBFU-7,5	150	330	240	790	314	676	190

ш

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Thermal protection: 230V-yes/400V-no
- Class F Insulation
- Operating mode continuous
- Protection IP68
- Water PH: 5-9
 - Liquid density: 1.2x10^3kg/m^3

Materials:

- Motor housing: alloy/grey cast iron
- Body: grey cast iron
- Shaft and rotor: stainless steel AISI 304
- Impeller: grey cast iron with wear-resistant coating /
- chromium alloy
- Bearings: NSK
- Mechanical seal:
- ≤ 2.2kW: Sic-Sic / Carbon-Sic
- ≥ 3.7kW: Sic-Sic / Sic-Sic
- Rotational speed of the electric motor: 2850RMP
- Cable length: 10 m

PROFESSIONAL SUBMERSIBLE SLUDGE PUMPS

KBFU

PARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Amperage (A)	inlet/outlet (inch)	Weight (kg)
25-KBFU-0,45	10	170	0,45	230	2,3	1	11,8
50-KBFU-0,45	11	280	0,45	230	2,3	2	12
50-KBFU-0,75	15	330	0,75	230	5,8	2	39
50-KBFU-1,5	18,5	420	1,5	230	11,4	2	44
50-KBFU-2,2	23	800	2,2	230	14	2	46

M PARAMETERS Head (m) Flow (l/min) Motor pow (kW) Voltage (V) Amperage (A) Inlet/outlet (inch) Weight (kq) Name 80-KBFU-1,5 750 3 15 1,5 400 3,5 37 80-KBFU-2,2 19 1000 2,2 400 5,0 3 39 100-KBFU-3,7 18,5 1650 3,7 400 7,7 4 67 80-KBFU-5,5 34 1300 5,5 400 11,4 3 84 150-KBFU-7,5 31 2200 7,5 400 15 6 114

PROFESSIONAL SUBMERSIBLE SLUDGE PUMPS

OBD AERATORS

AREAT 1

Hydrotechnical device - Aerator is mainly used in professional aeration applications for marine and freshwater aquaculture. It creates mixtures with a high percentage of dissolved oxygen and has a large area of oxygen aeration, which improves water quality on agriculture farms and supports growth. The device consists of a motor with impeller and a triangular baseplate.

Areat 1 is designed for clean water from ponds, lakes and other bodies of water without the content of abrasive solids.

Description:

- Advanced technology: a unique air intake chamber and a star-shaped impeller design provide high oxidation capacity and accurate gas and water mixing. Compared to other devices, the amount of oxygen supplied is up to 30% higher, which translates into lower farming costs.
- Many small air bubbles are created on the contact surface of the impeller and the surrounding water. A rotating impeller creates water flow extending horizontally at a certain speed and flowing
- upwards, stirring the water below and thus increasing the range of oxygenation. This solution eliminates a dead angle effect creating a large gas-water intersection area, which increases the oxygen dissolution.
- A large number of small air bubbles increases the contact surface of water and gas as well
 as the rate of oxygen dissolution, and as a result, water is more effectively saturated with
 dissolved oxygen and many harmful substances are removed. Improving water quality
 directly affects the health of cultured organisms and accelerates the growth rate.
- The equipment is compact, flexible, easy to install and use, which saves installation time and costs.

Model	Voltage	Power	Aeration	Oxygenation	Max. temperature	Immersion depth	Active operating area
	(V)	(kW)	(m³/h)	(kg (O ₂) /h)	(°C)	(m)	(m²)
AREAT 1	400	1,5	10 - 320	2,5	35	3 - 5	2000 - 4000

DEEP WELL PUMPS TIEFBRUNNENPUMPEN PONORNÁ ČERPADLA POMPE SUBMERSIBILE ГЛУБИННЫЕ НАСОСЫ

2" DEEP WELL MONOBLOC PUMPS

PARAIVIE I ERS								///////////////////////////////////////
Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
2″STING	50	18	370	230	1,8	¥2	52/690	11

3" / 3.5" DEEP WELL MONOBLOC PUMPS

100 mm

13

14

15

16

17

18

19

20

A CE IAI SIBO

mm

10

11

1

2

3

4

5

6

7

3″SQIBO / SCR

75mm deep well displacement pumps (SQIBO/3"SCR). The pump is mainly made of stainless steel, e.g. housing, bolts, inlet/outlet and rotor. Depending on the customer's requirements, the pumps are equipped with power cables of varying lengths terminated with a plug. Due to the capacitor built into the motor, the pump is ready for installation immediately after unpacking. The pump is equipped with thermal protection mounted in the motor winding. SQIBO and SCR pumps are among the most popular screw pumps available on the Polish market. The pumps are recognized by customers for their robust design and attractive price.

APPLICATION:

Supply of water to single-family houses and holiday houses.

- Operating conditions:
 - Maximum liquid temperature 40°C
 - Maximum ambient temperature 40°C
 - Class B Insulation
 - · Operating mode continuous
 - Protection IP68

Materials:

- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Screw: stainless steel AISI 304
- Stator: NBR
- Motor: oil cooling
- Mechanical seal: ceramics/Sic
- Rotational speed of the electric motor: 2850RMP

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Cable length (m)	Dimensions Dia/H (mm)	Weight (kg)
3" SCR	77	17	250	230	2,5	3⁄4	14	75/550	10
3" SQIBO 0,37	60	30	370	230	3,4	1	15	75/580	7,5
3" SQIBO 0,55	70	35	550	230	4	1	15/20	75/610	9
3" SQIBO 0,75	115	40	750	230	6,5	1	15/25	75/650	10,5
3,5" SCR - 0,55	80	40	550	230	5,2	1	14	88/600	11

4" / 6" DEEP WELL MONOBLOC PUMPS

GSK 4-16 / GSK 6-16

Top quality 4"and 6" deep well displacement pumps. The GSK pumps are designed for pumping clean cold water from own intakes. In addition, the 1" GSK 6-16 pump can also be used in ring wells due to its water-cooled engine. 1" GSK 4 - 16 pumps are available with IBO 400 V ~ 3/50 Hz three-phase motors with 20 m stock cable and with IBO ITALY 400 V ~ 3/50 Hz motors.

APPLICATION:

Supply of water to single-family houses and farms from deep well intakes. The pump can be used for irrigating gardens.

Operating conditions:

- Maximum liquid temperature 40°C
- Maximum ambient temperature 40°C
- Class B Insulation
- · Operating mode continuous
- Protection IP68

Materials:

- Screw: stainless steel AISI 304
 Stator:
- Stator: NBR Motor: 6"
- GSK:
- Shaft and rotor: stainless steel AISI 304
- Motor: water cooling
- Mechanical seal: ceramics/Sic 4"
- GSK:
- Housing: Stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Motor: oil cooling
- Mechanical seal: ceramics/Sic
- Rotational speed of the electric motor: 2850RMP
- Flow/Head

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
GSK 4-16	80	54	1100	400	4,8	1	98/750	15,5
GSK 6-16	80	54	1100	400	3,5	1	142/670	20,6

3" / 4" DEEP WELL MONOBLOC PUMPS

3″ SKM / 4 "SKM

3"SKM 100

3" (75 mm diameter) multi-stage deep well peripheral pump. Due to the small diameter, the pump can be installed in well with 25 cm diameter pipes. Depending on the customer requirements, the pump can be equipped with standard 15 or 20 m cable with a plug. Due to the capacitor built into the motor, the pump is ready for installation immediately after unpacking. The pump is supplied with thermal protection mounted in the motor winding.

4"SKM 100

4" (98 mm diameter) deep well peripheral pumps. The pumps are designed for minimum 4-inch wells. Durable materials such as stainless steel and brass have been used in the production of pump impellers. The pumps are available with the following power cables terminated with a plug:

4"SKM 100 – 15m / capacitor built into the motor 4"SKM 100 – 20m + control box 4"SKM 150 – 15m / capacitor built into the motor 4"SKM 150 – 20m + control box 4"SKM 200 – 15m / capacitor built into the motor

Depending on the version, the 4"SKM pumps have thermal protection mounted in the motor winding or in the control box. The pumps are available as single-phase 230 V \sim /50 Hz versions - 4 SKM, and 3-phase 400 V \sim 3/50 Hz versions - 4 SKT.

APPLICATION:

Supply of water to single-family houses and holiday houses. Irrigating gardens.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

•

- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Brass
- Venturi tube: stainless steel
- Mechanical seal: Carbon-SIC/Sic
- Motor: oil cooling
 Botational speed of th
- Rotational speed of the electric motor: 2850RMP

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
3″ SKM 100	60	45	750	230	5	1	75/590	12
4" SKM 100	60	45	750	230	5,8	1	98/530	16
4" SKM 150	107	50	1100	230/400	10	1	98/530	16
4" SKM 200	140	50	1500	230/400	11	1	98/540	17

4" DEEP WELL MONOBLOC PUMPS FOR RING WELLS

OLA INOX / AUTO

OLA / OLA INOX

98 mm diameter multi-stage deep well pumps for minimum 4" diameter ring and drilled wells. The pumps have a motor cooling jacket so they do not have to be completely submerged, and there is no need for a jacket tube, which is required for classic multistage pumps. Due to the capacitor built into the motor, the pump is ready for installation immediately after

unpacking. The pumps are equipped with thermal protection mounted in the motor winding.

OLA AUTO

The OLA AUTO pumps are equipped with automatic pump control so there is no need to install additional equipment such as a pressure switch or external PC or SK control. The principle of the sensor operation is based on the flow rate monitoring. When the pump is connected to the electrical or hydraulic system, opening the tap will start the pump, and closing it will stop the pump within a few seconds. The pump has a built-in non-return valve that limits the return of water from the system.

Both Ola 60/60 and OLA AUTO pumps can be installed together with a pressure tank, however, it should be remembered that an additional pressure switch does not need to be installed with OLA AUTO pumps.

APPLICATION:

Pumping water from ring wells, deep water wells, lakes and rivers. Supply of utility (tap) water to holiday houses and single-family houses. Irrigating gardens.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- **Class B Insulation**
- Operating mode continuous •
- Protection - IP68

Flow/Head

4

Materials:

- Housing: stainless steel AISI 304 Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
- Mechanical seal: Carbon-SIC/Sic
- Motor: cooling jacket
- Rotational speed of the electric motor: 2850RMP

OLA INOX

OLA AUTO

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Cable length (m)	Dimensions Dia/H (mm)	Weight (kg)	
OLA 60 /60	60	60	1000	230	5,2	1¼	20	69/630	10,75	
OLA 60 AUTO	58	55	450	230	4,1	1	20	98/890	11	
OLA 100 AUTO	50	90	800	230	5,0	1	20	98/920	14	
OLA 60/60 INOX	72	60	800	230	4,6	1	20	98/680	11,5	
OLA 70/100 INOX	71	100	1100	230	6,9	1	20	98/770	13,4	

3″ Ti INCREASED RESISTANCE TO SAND

3 inch (74 mm diameter) multi-stage deep well pumps with increased resistance to sand, intended for 3 and 4 inch wells. Increased resistance to sand is achieved by using "floating impellers" and the selection of wear-resistant materials: brass, AISI 304 stainless steel, and high quality plastic materials. The pump capacitor is built into the motor so the electrical system is much simpler than in case of pumps with a control box. The pumps are available with 1.5 m long cable section or 20 m long stock cable terminated with a plug. The pumps are equipped with thermal protection mounted in the motor winding. Due to their reliable operation and high performance, the 3"Ti pumps are among the most often installed 3" pumps in Poland.

APPLICATION:

Supply of water to single-family houses and holiday houses. Irrigating gardens.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: brass
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil cooling
- · Rotational speed of the electric motor: 2850RMP

Flow/Head

19

20

21

22

23

24

25

26

27

17

18

28

29

30

31

32

GIB

BO

14

15

16

8

9

10

11

12

13

2

3

							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
3 Ti 15	60	50	370	230	3,2	1	74/1035	10
3 Ti 20	82	50	550	230	4,2	1	74/1210	12
3 Ti 27	110	50	750	230	5,2	1	74/1470	14
3 Ti 37	152	50	1100	230	6,7	1	74/1810	18

5

8

9

11

12

13

۱4

15

18

19

20

21

22

23

CE BIBO

SIBO

25

26

27

28

29

3" SDM INCREASED RESISTANCE TO SAND

3 inch (74 mm diameter) multi-stage deep well pumps, with increased resistance to sand, intended for 3 and 4 inch wells. Increased resistance to sand is achieved by using "floating impellers" and the selection of wear-resistant materials. The pump capacitor is built into the motor so the electrical system is much simpler than in case of pumps with a control box. The pumps are available with 1.5 m long cable section or 20 m long stock cable terminated with a plug. The pumps are equipped with thermal protection mounted in the motor winding. The pumps design is the same as 3"Ti pumps but they provide higher flow of up to 701/min.

APPLICATION:

Supply of water to single-family houses and holiday houses. Irrigating gardens. Drainage/dewatering.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: brass
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
 Mechanical seal: Cerar
- Mechanical seal: Ceramics/Sic/NBRMotor: oil cooling
- Rotational speed of the electric motor: 2850RMP

IIII PARA	PARAMETERS										
,	Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)		
3"S	5DM 24	80	70	750	230	6,5	11⁄4	75/1320	11		
3"S	5DM 33	117	70	1100	230	7,2	11⁄4	75/1660	13		

POMPY GŁĘBINOWE 3" WIELOSTOPNIOWE - ANTYPIASKOWE

22

23

24

25

26

27

28

29

12

13

14

15

16

8

9

18

19

20

3" STM INCREASED RESISTANCE TO SAND

75 mm diameter multi-stage deep well pumps with increased resistance to sand, intended for 3 and 4 inch wells. Increased resistance to sand is achieved by using "floating impellers" and the selection of wear-resistant materials. The pump capacitor is built into the motor so the electrical system is much simpler than in case of pumps with a control box. The pumps are equipped with thermal protection mounted in the motor winding. The pumps are available with 1.5 m long cable section or 20 m long stock cable terminated with a plug.

The main advantage of the 3STM pumps is their up to 100l/min. flow, exceptionally high as for 3" pumps.

APPLICATION:

Supply of water to single-family houses and holiday houses. Irrigating gardens. Drainage/dewatering.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: brass
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil cooling
- Rotational speed of the electric motor: 2850RMP

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)			
3″ STM 16	62	100	750	230	5,5	1¼	75/1260	10			
3″ STM 20	77	100	1100	230	6,7	1¼	75/1480	12			
3″ STM 24	93	100	1100	230	6,7	1¼	75/1580	14			
3″ STM 28	108	100	1500	230	9,7	1¼	75/1760	16			

3" INOX MULTI-STAGE DEEP WELL PUMPS

76 mm diameter stainless steel multi-stage deep well pumps intended for wells with 4" minimum diameter. Maximum sand content in water is up to 3%. Due to the materials used, the ISP pumps are among the most durable deep well pumps. Inlet, outlet, housing, shaft and impeller are made entirely of stainless steel. The pumps are supplied with 3" oil-cooled motors.

The 3" ISP series are the first pumps made entirely of stainless steel available on the Polish market. The pumps have a 2 m long power cable that can be extended. Upon request, the cable can be extended by any length. APPLICATION: Supply of water to single-family houses and holiday houses. Irrigating gardens. Drainage/dewatering.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: stainless steel AISI 304
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Venturi tube: stainless steel AISI 304
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil cooling
- Rotational speed of the electric motor: 2850RMP

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
3ISP 2-22	80	50	550	230	5,7	1 1/4″	76/1150	12
3ISP 2-30	115	50	750	230	7,3	1 1/4″	76/1350	14
3ISP 3-24	85	65	750	230	7,9	1 1/4″	76/1290	16
3ISP 3-32	105	65	1100	230	9,7	1 1/4″	76/1630	18

BI 3.5" MULTI-STAGE DEEP WELL PUMPS

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
3,5″ SCM 2/9	58	78	550	230	4	1 ½	90/790	13
3,5″ SCM 2/14	74	70	1100	230/400	5,8 / 2,8	11⁄2	90/1010	16
3,5″ SCM 2/18	95	70	1500	230/400	7,3 / 3,5	11⁄2	90/1160	18
3,5″ SCM 3/18	78	120	1500	230/400	7,3 / 3,5	11⁄2	90/1410	19
3,5″ SCM 3/25	108	120	1800	230/400	10 / 4,2	11⁄2	90/1780	27

22

23

24

25

18

26

H

_14

15

16

17

19

20

21

10

11

12

13

÷ 🗄

ā,

4

J u

h H E

5

6 7

CER Y SIBO

GIBO

9

3,5" SDM INCREASED RESISTANCE TO SAND

90 mm diameter multi-stage deep well pumps

with increased resistance to sand. Power supply 230 V~ /50 Hz. The IBO SDM series were the first pumps on the market to be known as "sand resistant". Increased resistance to sand is achieved by using "floating impellers" and the selection of wear-resistant materials: brass, AISI 304 stainless steel, and high quality plastic materials. The pumps are equipped with thermal protection mounted in the motor winding. With its small diameter, the capacitor built into the motor and the factory-mounted 20 m long cable, the pump is ready for installation immediately after unpacking. The 3.55DM pumps were the first 90 mm diameter pumps in

Poland and are currently among the most often installed pumps by installation services.

APPLICATION:

Supply of water to single-family houses and holiday houses. Irrigating gardens. Drainage/dewatering.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: brass
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil cooling
- · Rotational speed of the electric motor: 2850RMP

Name	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
3,5″ SDM 2/12	73	70	800	230	5,5	1 1⁄4	90/920	11,5
3,5" SDM 3/11	63	105	800	230	5,5	11⁄2	90/1020	11
3,5″ SDM 3/15	90	105	1100	230	7,5	11⁄2	90/1260	17
3,5″ SDM 3/18	109	105	1500	230	9,9	11⁄2	90/1410	18
3,5" SDM 3/23	130	105	1800	230	11,9	1½	90/1670	23

3

6

8

4"SD/4"SDM **INCREASED RESISTANCE TO SAND**

98 mm diameter multi-stage deep well pumps with increased resistance to sand, intended for minimum 4 inch diamater wells.

All SD pumps have PZH (National Institute of Hygiene) approval. 4SD/4SDM pumps are available with IBO and IBO ITALY motors as 400V~3 /50Hz and 230V / 50Hz versions. Increased resistance to sand is achieved by using "floating impellers" and the selection of wear-resistant materials: brass inlet and outlet, AISI 304 stainless steel housing, shaft and filter screen, and the impellers made of high quality plastic materials. Pumps with 230 V ~ / 50 Hz motors are equipped with a control box with built-in capacitor and overcurrent protection. Pumps with 0.75 kW to 2.2 kW motors are available with 1.5 m or 20 m long cable. 4SD 2/12 pumps have 20 m power cable.

Pumps with 3 kW to 4 kW motors are available with 2 m long cable. Pumps with 5.5 kW do 7.5 kW motors are available with 3 m long cable. Upon request, the cable can be extended by any length. The IBO 4SD series were the first pumps on the market to be known as "sand resistant". Currently, they are among the few on the market to provide such high sand resistance. Maximum sand content in water is up to 5%.

Application:

Supply of water to single-family houses and farms from deep well intakes. Irrigating gardens and orchards. Land drainage/dewatering. Water supply systems. Industrial applications.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C Class B/F Insulation
- Operating mode continuous .
- Protection IP68

Materials:

- Inlet/outlet: brass
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil cooling
- Rotational speed of the electric motor: 2850RMP .

16

17

18

19

20

21

22

23

24

25

26

27

pindu -pind &

ICE III SIBO

OIBO

98 mm POMPA O PODWYŻSZONEJ ODPORNOŚCI NA PIASEK WIRNIKI PŁYWAJĄCE

100 mm

Depending on the production batch, the device parameters may differ from the data provided in the table

I PARAMETE	ERS ////////////////////////////////////							
Name	Head (m)	Flow (I/min)	Motor power (kW)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
4 SD 2/12	85	80	0,75	230	6,3	1¼	98/930	16
4 SD 3/14	103	94	1,1	230/400	8,5/4,0	1½	98/1050	17
4 SD 3/18	135	94	1,5	230/400	10,5/5,0	1½	98/1260	19
4 SD 6/10	74	162	1,5	230/400	10,5/5,0	2	98/1100	18
4 SD 6/14	103	162	2,2	230/400	15,5/6,3	2	98/1340	21
4 SD 6/20	148	162	3	400	7,2	2	98/1580	23
4 SD 8/15	100	250	3	400	7,2	2	98/1640	23
4 SD 8/20	135	250	4	400	9,2	2	98/1970	30
4 SD 8/25	169	250	5,5	400	12,9	2	98/2430	35
4 SD 10/13	72	360	3	400	7,2	2	98/1650	26
4 SD 10/17	94	360	4	400	9,2	2	98/2010	31
4 SD 10/22	121	360	5,5	400	12,9	2	98/2460	38
4 SD 16/14	75	435	4	400	9,2	2	98/1800	30
4 SD 16/18	99	435	5,5	400	12,9	2	98/2250	37
4 SD 16/28	153	435	7,5	400	18,5	2	98/3000	47
4SD 20/15	90	500	4	400	9,2	2	98/2120	29
4SD 20/20	125	500	5,5	400	12,9	2	98/2360	37
4SD 20/25	150	500	7,5	400	18,5	2	98/2840	46

OIBO

4" STAINLESS STEEL MULTI-STAGE DEEP WELL PUMPS

4"ISP / 4"ISPM

98 mm diameter stainless steel multi-stage deep well pumps intended for minimum 4" diamater wells. Maximum sand content in water is up to 0.3%.

Due to the materials used, the ISP pumps are among the most durable deep well _____ pumps. Inlet, outlet, housing, shaft and impellers are made entirely of stainless steel.

4 ISPM pumps are available with IBO and IBO ITALY 230 V \sim / 50Hz motors. 4 ISP pumps are available with IBO and IBO ITALY 400 V \sim / 50Hz motors.

Pumps with 230 V \sim / 50 Hz motors are equipped with a control box with built-in capacitor and overcurrent protection.

Pumps with 0.75 kW to 2.2 kW motors are available with 1.5 m or 20 m long cable. Upon request, the cable can be extended by any length.

Application:

Supply of water to single-family houses and farms from deep well intakes. Irrigating gardens and orchards. Land drainage/dewatering. Water supply systems. Industrial applications.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B/F Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: stainless steel AISI 304
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Venturi tube: stainless steel AISI 304
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil cooling

PARAMETERS

Rotational speed of the electric motor: 2850RMP

Depending on the production batch, the device parameters may differ from the data provided in the table

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
4 ISP 3/16	100	83	1,1	230/400	8,5/4,0	11⁄4	98/950	16
4 ISP 3/22	134	83	1,5	230/400	10,5/5,0	11⁄4	98/1100	20
4 ISP 5/14	85	130	1,5	230/400	10,5/5,0	11⁄2	98/950	19
4 ISP 5/20	120	130	2,2	230/400	15,5/6,3	11⁄2	98/1140	22
4 ISP 5/28	169	130	3	400	7,2	11⁄2	98/1340	25
4 ISP 8/13	74	240	2,2	230/400	15,5/6,3	2	98/1150	23
4 ISP 8/18	103	240	3	400	7,2	2	98/1400	26
4 ISP 8/25	143	240	4	400	9,2	2	98/1780	32
4 ISP 14/10	66	383	3	400	7,2	2	98/1150	22
4 ISP 14/13	86	383	4	400	9,2	2	98/1350	27
4 ISP 14/18	119	383	5,5	400	12,9	2	98/1670	33
4 ISP 14/25	165	383	7,5	400	18,5	2	98/2160	44

4" DEEP WELL PUMPS 🧿 🖪 🛛

3" / 4" MULTI-STAGE BO **DEEP WELL PUMPS 6000RPM**

IBQ HIGH SPEED DEEP WELL PUMPS

IBQ multi-stage centrifugal deep well pumps are designed for operation in drilled wells and open water reservoirs. Unlike other deep well pumps, the IBQ have advanced energy-saving motors with permanent magnets and a frequency converter. As a result, the motor achieves 6000 rpm and a very high performance.

Motor design with permanent magnets and an inverter has many advantages over traditional pumps. These include:

- Energy saving due to high performance of the motor and pump. By achieving the same hydraulic parameters of pressure and performance, the IBQ pumps can be used with motor that are approximately 15-20% smaller than motors used in traditional pumps.
- Dry-running protection. The inverter electronics control the motor current draw. When dry run specific draw is detected, the motor is stopped. After a certain period of time, the pump tries to automatically restart, and its operation will continue after inflow is restored.
- Soft start resulting in no negative effect of hydraulic shock on the hydraulic system, significantly reduced mechanical wear of the motor and pump, no impact of inrush current on the electricity network
- In traditional solutions, in order to achieve constant motor operating parameters, rapid starting is required. During starting, the motor draws a multiple of normal operating current during the first few seconds of operation (inrush current). This may result in voltage fluctuations in the electricity network affecting operation of other devices connected to this network, blown fuses, and burning of electrical connections in control units. Usually, hydraulic parameters of the pump are during starting instantaneously higher than nominal, which means that in the first seconds of operation water with higher parameters (pressure, flow) than nominal, designed for a given network is pumped into the system. This is called hydraulic shock. Repeated hydraulic shock leads to excessive wear of hydraulic components of the water supply system. Another disadvantage eliminated by soft start is the wear and tear of motor's mechanical and electrical components. Hydraulic shocks increase the mechanical load on the motor and pump, and the high inrush current weakens the internal insulation of the motor.
- The motors can operate with relatively high voltage fluctuations 160-250V for single-phase motors, 320-450V for three-phase motors.
- Due to the smaller size of IBQ pumps compared to traditional pumps, drilling and installation costs are considerably lower.

Application:

Supply of water to single-family houses and farms from deep well intakes. Irrigating gardens and orchards. Land drainage/dewatering. Water supply systems. Industrial applications.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- **Class F Insulation**
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: stainless steel AISI 304
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Venturi tube: stainless steel AISI 304
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil coolina / with inverter
- Rotational speed of the electric motor: 6000RMP

The illustration shows two pumps with the same parameters - IBO, and a traditional ISP. Both pumps are shown in the same scale.

25 kg

3" MULTI-STAGE DEEP WELL PUMPS 6000RPM

3″IBQ

Maximum pump diameter 78 mm

IIII PARAME	PARAMETERS											
Name	Motor (kW)	Outlet (inch)	Voltage (V) single phase	Pump height (cm)	Max. flow (l/min)	Max. head (m)	Weight (kg) (without cable)					
3″IBQ 2-6	0,8	11⁄4	160 - 250	109	85	85	9,3					
3"IBQ 2-8	1,1	11⁄4	160 - 250	112	85	110	10,3					
3″IBQ 2-11	1,5	11⁄4	160 - 250	117	85	150	12,5					
3″IBQ 2-16	2,2	11⁄4	160 - 250	130	85	220	14,2					

Name	Motor (kW)	Outlet (inch)	Voltage (V) single phase	Pump height (cm)	Max. flow (l/min)	Max. head (m)	Weight (kg) (without cable)
3″IBQ 5-6	1,1	11⁄4	160 - 250	108	150	75	10,3
3″IBQ 5-8	1,5	11⁄4	160 - 250	120	150	102	13,3
3″IBQ 5-10	2,2	11⁄4	160 - 250	131	150	130	13,8

Name	Motor (kW)	Outlet (inch)	Voltage (V) single phase	Pump height (cm)	Max. flow (l/min)	Max. head (m)	Weight (kg) (without cable)
3″IBQ 8-4	1,5	11⁄2	160 - 250	101	250	56	12,1
3″IBQ 8-6	2,2	11/2	160 - 250	113	250	80	13,6

▲ Flow/Head

4" MULTI-STAGE DEEP WELL PUMPS 6000RPM

4″IBQ

Maximum pump diameter 98 mm

Name Motor (kW) Outlet (inch) Voltage (V) singlephase Pump height (cm) Max. Row (l/min) Max. head (m) Weight (kg) (without cable) 4"IBQ 12-4 4 2 320-450 104 390 110 20,2 4"IBQ 12-6 5,5 2 320-450 114 390 178 22,2	PARAMETERS							
	Name				Pump height (cm)		Max. head (m)	
4"IBQ 12-6 5,5 2 320-450 114 390 178 22,2	4″IBQ 12-4	4	2	320-450	104	390	110	20,2
	4″IBQ 12-6	5,5	2	320-450	114	390	178	22,2

Name	Motor (kW)	Outlet (inch)	Voltage (V) single phase	Pump height (cm)	Max. flow (l/min)	Max. head (m)	Weight (kg) (without cable)
4″IBQ 20-3	4	2	320-450	104	500	85	20,2
4″IBQ 20-4	5,5	2	320-450	114	500	110	20,7
4″IBQ 20-5	7,5	2	320-450	124	500	140	25,1
4″IBQ 20-7	11	2	320-450	144	500	185	29

Name	Motor (kW)	Outlet (inch)	Voltage (V) single phase	Pump height (cm)	Max. flow (l/min)	Max. head (m)	Weight (kg) (without cable)
4″IBQ 30-3	5,5	3	320-450	115	800	70	22,5
4″IBQ 30-4	7,5	3	320-450	126	800	95	25,3
4″IBQ 30-5	11	3	320-450	140	800	120	28,7

4" MULTI-STAGE DEEP WELL PUMPS 6000RPM

Flow/Head

ШШ

27

l 50mm

127 mm diameter multi-stage deep well pumps with increased resistance to sand, intended for minimum 5" wells. The IBO SD series were the first pumps on the market to be known as "sand resistant". The "sand resistance" is the unquestionable advantage of IBO pumps over competing products due their innovative and rare design

with increased resistance to sand, unusual in 3-inch pumps. For 5SD 25 pumps, the maximum sand content in water is 5%. Increased resistance to sand is achieved by using "floating impellers".

Increased resistance to sand is achieved by using "floating impellers". Upon request, the cable of any length can be installed.

APPLICATION:

Supply of water to large farms from deep water intakes, garden and orchard irrigation, shrubs and tree nurseries, land drainage/dewatering. Water supply systems, industrial applications.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C .
- **Class B Insulation**
- Operating mode continuous
- Protection IP68

Materials:

· Inlet/outlet: grey cast iron

Impeller: Noryl

Venturi tube: Norvl

Housing: stainless steel AISI 304

Mechanical seal: Ceramics/Sic/NBR

Shaft and rotor: stainless steel AISI 304

PARAMETERS

Name	Head (m)	Flow (I/min)	Motor power (kW)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
5″ SD 20/8	99	500	4	400	10,4	3	127/1440	34
5″ SD 20/11	115	500	5,5	400	14	3	127/1640	42
5″ SD 20/14	155	500	7,5	400	17,5	3	127/1880	50
5″ SD 20/17	185	500	9,2	400	21,5	3	127/2040	58

Depending on the production batch, the device parameters may differ from the data provided in the table

6″SD INCREASED RESISTANCE TO SAND

146 mm multi-stage deep well pumps with increased resistance to sand, intended for minimum 6" wells. The IBO SD series were the first pumps on the market to be known as "sand resistant".

The "sand resistance" is the unquestionable advantage of IBO pumps over competing products due their innovative and rare design with increased resistance to sand, unusual in 6-inch pumps.

For 6SD 25 pumps, the maximum sand content in water is 5%. Increased resistance to sand is achieved by using "floating impellers". The pumps are available with 6 inch IBO or IBO ITALY motors.

Upon request, the cable of any length can be installed.

APPLICATION:

Supply of water to large farms from deep water intakes, garden and orchard irrigation, shrubs and tree nurseries, land drainage/dewatering. water supply systems, industrial applications.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: grey cast iron
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: Noryl
- Venturi tube: Noryl
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil cooling
- · Rotational speed of the electric motor: 2850RMP

PARAI	METERS	

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
6 SD 25/7	89	920	7,5	400	17,5	3	146/1440	52
6 SD 25/9	113	920	9,2	400	21,5	3	146/1650	59
6 SD 25/11	135	920	11	400	24,5	3	146/1880	67
6 SD 25/13	160	920	13	400	27,5	3	146/2090	73
6 SD 25/15	185	920	15	400	31,5	3	146/2300	82
6 SD 30/13	183	650	13	400	27,5	3	146/2150	73
6 SD 30/15	211	650	15	400	31,5	3	146/2400	83
6 SD 45/9	112	1150	15	400	31,5	3	146/1818	81
6 SD 60/7	85	1300	15	400	31,5	3	146/1784	83

Depending on the production batch, the device parameters may differ from the data provided in the table

6" STAINLESS STEEL MULTI-STAGE DEEP WELL PUMPS

6″ ISP STAINLESS STEEL PUMPS

Stainless steel multi-stage deep well pumps with diameters of up to 145 mm, designed for pumping water with up to 0.3% sand content from a minimum 6"(150 mm) wells. Robust stainless steel design provides long-term and reliable operation.

The pumps are available with 4 and 6 inch IBO or IBO ITALY motors. Depending on customer requirements, connected IBO ITALY motors can be oil- or water-cooled.

Due to the proven design and very high parameters compared to the diameter of the pumps, they can be used in a very wide range of applications, from supplying water to large farms to industrial solutions.

APPLICATION:

Supply of water to large farms from deep water intakes, garden and orchard irrigation, shrubs and tree nurseries, land drainage/dewatering. water supply systems, industrial applications.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class B/F Insulation
- Operating mode continuous
- Protection IP68

Materials:

- Inlet/outlet: stainless steel AISI 304
- Clutch, tie rods and cable protector: stainless steel AISI 304
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Impeller: stainless steel AISI 304
- Venturi tube: stainless steel AISI 304
- Mechanical seal: Ceramics/Sic/NBR
- Motor: oil/water cooling
- Rotational speed of the electric motor: 2850RMP

<i>////</i> //	PARAMETERS	1
////.	DADAAAETEDC	- 72
		- 12
/////.	FANAMETLNS	~

10

MARAIVIE									
Name	Head (m)	Flow (l/min)	Motor power (kW)	Motor diameter (inch)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Dimensions Dia/H (mm)	Weight (kg)
6 ISP 17/7	80	500	4	4	400	10,2	21/2	145/1220	29
6 ISP 17/11	120	500	5,5	4	400	14	21⁄2	145/1480	37
6 ISP 17/14	155	500	7,5	4	400	17,5	21⁄2	145/1770	47
6 ISP 30/7	85	833	7,5	4/6	400	17,5	3	145/1500	56
6 ISP 30/9	110	833	9,2	6	400	21,5	3	145/1720	66
6 ISP 30/13	155	833	13	6	400	27,5	3	145/1920	70
6 ISP 46/2	25	1250	3	4	400	8,2	3	145/960	22
6 ISP 46/7	95	1250	11	6	400	24,5	3	145/1950	65
6 ISP 46/10	135	1250	15	6	400	31,5	3	145/2380	83
6 ISP 60/7	95	1420	15	6	400	31,5	3	145/2040	75

Depending on the production batch, the device parameters may differ from the data provided in the table

6" STAINLESS STEEL MULTI-STAGE DEEP WELL PUMPS

ITALIAN DEEP WELL PUMPS ITALIENISCHE TIEFBRUNNENPUMPEN ITALSKÁ PONORNÁ ČERPADLA POMPE SUBMERSIBILE ITALIENE ИТАЛЬЯНСКИЕ ГЛУБИННЫЕ НАСОСЫ

IBO ITALY FP4 ITALIAN STAINLESS STEEL DEEP WELL PUMPS

WITH DRY RUN PRO TECHNOLOGY

Due to the DRY RUN PRO technology, the FP4 pumps have increased resistance to seizure in case of dry running operation. The design and materials

used make the pump suitable for pumping water for food processing purposes. The pump has been properly certified. Pumps in A. B. D. E

sizes are equipped with radial impellers and $1\frac{4}{}$ outlets while pumps in F, H, L sizes have semi-axial impellers and $2^{\prime\prime}$ outlets.

All pumps are supplied with built-in check valves. The maximum outer diameter of the pump including cable protector is 98 mm. The pump is suitable for vertical and horizontal operation.

The FP4 pumps can be used in households and on farms, in water supply systems, irrigation systems, fire extinguishing systems and industrial applications.

The FP4 deep well pumps has been manufactured in the innovative DRY RUN PRO technology by the leading Italian manufacturer of deep well pumps. They are very robust, compact and reliable. The inlet and outlet body

sections are made of AISI 304 stainless steel made by lost-wax technique, which guarantees high chemical resistance in contact with water, as well as product reliability. The pumps design is based on floating rotors moving independently in the Venturi tube chambers.

Due to the innovative design, it is protected by a European patent. This solution guarantees that pumps have unique properties, such as reliable operation in dry running conditions.

Operating conditions:

- Maximum liquid temperature 35°C
- Maximum ambient temperature 35°C
- Class F Insulation
- · Operating mode continuous
- Protection IP68

Materials:

brak

tłumaczenia

- Inlet/outlet: stainless steel AISI 304
- Non-return valve: stainless steel AISI 304
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Venturi tube cover: stainless steel AISI 304
- Venturi tube: PA
- Impeller: PA
- Sliding sleeve: Al203
- Clutch: stainless steel AISI 316L
- Mechanical seal: Ceramics/Sic/NBR

BACZ DZIAŁANIE I BUDOWĘ POMPY NA:

http://bit.ly/Pompyglebinowe

- Motor: oil cooling
- Rotational speed of the electric motor: 2850RMP

6340 6330 6320.2 6320.1 6344 2531 1410 3312 3412 1471 2110 2250 1471 1410 1471 3320 1410 3420 1414 8210 1471 1135 6531 1130 2920 8361 7000 4" NEMA brak tłumaczenia

technologia

RUN

6310 6342

DANE UŻYTKOWE:

nax. wydajność:	30 m³/h	
max. wysokość podnoszenia:	340 m	
max. moc silnika:	7,5 kW	
max. zawartość piasku:	185 g/brak	
max. temperatura wody:	^{35°C} tłumaczenia	
max. ilość cykli włącz / wyłącz na godzinę:	30	
możliwość pracy w pozycji poziomej.		

PARAMETERS FP4

ITALIAN STAINLESS STEEL DEEP WELL PUMPS WITH DRY RUN PRO TECHNOLOGY

Tolerance in accordance with ISO 9906 Annex A Gr. 2

		m3/h	0	0,6	0,9	1,2	1,5	1,8	2,1	2,4	2,7	3	3,6	4,2	4,8	5,4	б	6,6	7,2	8,4	9,6	10,8	12	13,5	15	16,5	18	19,5	21	22,5	24	25,5	27
TYPE	kW	l/min	0	10	15	20	25	30	35	40	45	50	60	70	80	90	100	110	120	140	160	180	200	225	250	275	300	325	350	375	400	425	450
		l/sec	0	0,17	0,25	0,33	0,42	0,50	0,58	0,67	0,75	0,83	1,00	1,17	1,33	1,50	1,67	1,83	2,00	2,33	2,67	3,00	3,33	3,75	4,17	4,58	5,00	5,42	5,83	6,25	6,67	5,83	6,25
FP4 A005			63	59	55	50	43	35	26	15																							
FP4 A007			90	85	80	72	62	51	37	20																							
FP4 A010 FP4 A015			124 181	117	109 159	99 144	86 125	70 101	50 73	28 41																							
FP4 A015 FP4 A020			237	224	209	189	163	133	96	54																							
FP4 A030			356	336	313	283	245	199	144	81																							
FP4 B005	0,37		47		44	42	39	36	33	28	23	18																					
FP4 B007	0,55		70		65	63	59	54	49	43	35	27																					
FP4 B010			96		89	85	80	74	67	58	48	37																					
FP4 B015			140		129	124	117	107	96	83	68	50																					
FP4 B020 FP4 B030			187 274		174 254	166 243	155 227	142 208	126 185	109 159	87 128	64 94																					
FP4 B030 FP4 B040			373		346	331	310	208	253		175	128																					
FP4 D005			33				31	30	30	29	27	26	23	18	13																		
FP4 D007			46				44	43	42	40	38	36	32	25	18																		
FP4 D010	0,75		65				62	61	59	57	55	52	45	36	25																		
FP4 D015			97				91	89	87	83	80	76	65	52	36																		
FP4 D020			129				121	119	116	111	106	101	87	69	48																		
FP4 D030 FP4 D040	2,2 3		193 257				182 241	178 235	173 228	167 220	160 209	151 198		103 134	71 90																		
FP4 D040 FP4 D055			346				325	318	307	220	209	267	229	134	90 122																		
FP4 E005			27				525	5.0	26	25	25	24	22	20	17	13	9	5	1														
FP4 E007			41						38	38	37	36	33	30	25	20	14	8	2														
FP4 E010	0,75		54						51	50	49	48	44	40	33	26	19	11	2														
FP4 E015			82						77	75	74	72	67	60	50	39	28	16	4														
FP4 E020			109						102	101	98	96	89	79	67	53	38	22	5														
FP4 E030			163						154	151	148	144	133	119	100	79	56	32	7														
FP4 E040 FP4 E055	3		218 299						205 282	201 277	197 271	191 263	178 245	159 218	134 184	105 145	75 103	43 59	10 13														
FP4 F007	0,55	H	27						202	2//	23	205	245	210	20	19	18	17	16	12	8	4											
FP4 F010		(m)	40								34	34	33	32	30	29	28	26	24	18	12	6											
FP4 F015	1,1		60								51	51	49	47	46	44	41	39	35	28	19	9											
FP4 F020	1,5		77								67	66	64	63	60	58	55	52	47	37	25	12											
FP4 F030	2,2		116								101	100	97	94	91	87	83	77	71	55	37	18											
FP4 F040 FP4 F055	3		154								135		129				110	103	95	74	50	24											
FP4 F055 FP4 F075	4 5,5		210 266								187 241	184 238	178 232	173 224	166 215		150 190	140 176	129 160	101 124	67 79	27 31											
FP4 F100			370								330				294		265	248		179	118	47											
FP4 H010			26												24	23	23	22	21	20	18	15	12	8	4								
FP4 H015	1,1		39												35	35	34	33	32	30	27	23	18	12	5								
FP4 H020			52												47	46	45	44	43	40	36	30	24	16	7								
FP4 H030			78												71	69	68	67	64	60	53	46	37	23	11								
FP4 H040 FP4 H055			104 144												94 129	93 127	91 125	89 123	86 121	80 113	71 102	61 88	49 69	31 44	14 16								
FP4 H055 FP4 H075			197													174			164	154	139		94	60	22								
FP4 H100			262														228			206		159		80	30								
FP4 L020			36																30	28	27	25	23	21	18	16	13	11	8	4	1		
FP4 L030			50																42	40	37	35	33	29	25	22	19	15	11	6	1		
FP4 L040			72																59	57	53	50	47	42	35	32	27	21	15	9	2		
FP4 L055			101																83	79	75	70	65	59	49	45	37	29	21	12	3		
FP4 L075 FP4 L100			137 180																112 148	107 142	101 133	95 125	88 116	80 105	67 88	61 80	50 66	40 53	29 38	17 22	4 5		
FP4 L 100 FP4 Q015			24																140	20	133	125	17	105	88 15	14	13	11	10	8	5	5	3
FP4 Q013			30																	25	24	23	22	20	19	17	16	14	12	10	8	6	4
FP4 Q030			48																	39	38	36	35	33	30	28	25	22	19	16	13	10	7
FP4 Q040	3		65																	54	52	50	48	45	42	38	35	31	27	23	18	14	9
FP4 Q055			89																	74	71	68	65	61	57	52	47	42	36	31	25	19	13
FP4 Q075			119																	98	95	91	87	82	76	70	63	56	49	41	33	25	17
FP4 Q100	7,5		161																	133	128	123	117	110	102	94	85	76	66	55	45	34	23

Depending on the production batch, the device parameters may differ from the data provided in the table

MARAMET	ERS									
Name	Head (m)	Flow (I/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)		erage W/400V	Dimensions Dia/H (mm)		ht (kg) //400V
A 005	63	40	0,37	230/400	1¼	3,5	1,36	98/710	11,5	10,8
A 007	91	40	0,55	230/400	1¼	4,7	1,85	98/835	13,6	12,4
A 010	128	40	0,75	230/400	1¼	5,9	2,20	98/977	15,9	14,4
A 015	185	40	1,1	230/400	1¼	8,6	3,00	98/1231	19,3	18,5
A 020	240	40	1,5	230/400	1¼	10,7	4,10	98/1464	22,7	20,7
A 030	348	40	2,2	230/400	1¼	14,8	5,6	98/2013	31,8	26,9

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)	Amperage (A) 230V/400V		Dimensions Dia/H (cm)		ht (kg) /400V
B 005	43	60	0,37	230/400	1¼	3,5	1,5	98/631	10,8	10,1
B 007	70	60	0,55	230/400	1¼	4,7	1,85	98/735	12,7	11,5
B 010	95	60	0,75	230/400	1¼	5,9	2,20	98/838	14,7	13,2
B 015	139	60	1,1	230/400	1¼	8,6	3,00	98/1000	17,2	16,4
B 020	182	60	1,5	230/400	1¼	10,7	4,10	98/1192	20,2	18,2
B 030	260	60	2,2	230/400	1¼	14,8	5,60	98/1602	28,1	23,2
B 040	342	60	3	400	1¼	-	7,50	98/1910	-	7,5

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)	Amperage (A) 230V/400V		Dimensions Dia/H (cm)		ht (kg) 1/400V
D 005	33	90	0,37	230/400	11⁄4	3,5	1,35	98/591	10,4	9,7
D 007	46	90	0,55	230/400	1¼	4,7	1,85	98/656	11,9	10,7
D 010	68	90	0,75	230/400	1¼	5,9	2,20	98/738	13,6	12,1
D015	100	90	1,1	230/400	1¼	8,6	3,00	98/861	15,7	14,9
D 020	133	90	1,5	230/400	1¼	10,7	4,10	98/993	18,1	16,1
D 030	194	90	2,2	230/400	1¼	14,8	5,60	98/1290	24,7	19,8
D 040	261	90	3	400	1¼	-	7,50	98/1479	-	24,8
D 055	338	90	4	400	1¼	-	9,80	98/1824	-	30,9

PARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)		erage V/400V	Dimensions Dia/H (mm)		ht (kg) /400V
E 005	29	110	0,37	230/400	1¼	3,5	1,35	98/579	10,3	9,6
E 007	44	110	0,55	230/400	1¼	4,7	1,85	98/648	11,8	10,6
E010	58	110	0,75	230/400	1¼	5,9	2,20	98/714	13,3	11,8
E015	85	110	1,1	230/400	1¼	8,6	3,00	98/824	15,2	14,4
E 020	114	110	1,5	230/400	1¼	10,7	4,10	98/945	17,5	15,5
E 030	170	110	2,2	230/400	1¼	14,8	5,60	98/1219	23,8	18,9
E 040	225	110	3	400	1¼	-	7,50	98/1383	-	23,5
E 055	303	110	4	400	11⁄4	-	9,80	98/1712	-	29,3

156

MARAMETERS

Name	Head (m)	Flow (I/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)		rage (A) //400V	Dimensions Dia/H (mm)		ht (kg) /400V
F 007	27	180	0,55	230/400	2	4,7	1,85	98/664	11,9	10,7
F 010	40	180	0,75	230/400	2	5,9	2,20	98/760	13,6	12,1
F 015	60	180	1,1	230/400	2	8,6	3,00	98/894	15,7	14,9
F 020	77	180	1,5	230/400	2	10,7	4,10	98/1037	18,1	16,1
F 030	116	180	2,2	230/400	2	14,8	5,60	98/1356	24,7	19,8
F 040	154	180	3	400	2	-	7,50	98/1567	-	24,8
F 055	210	180	4	400	2	-	9,80	98/2000	-	31,4
F 075	266	180	5,5	400	2	-	12,7	98/2537	-	41,5
F 100	370	180	7,5	400	2	-	16,9	98/3176	-	50,5

IBO ITALY FP4 H ITALIAN STAINLESS STEEL DEEP WELL PUMPS WITH DRY RUN PRO TECHNOLOGY

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)		rage (A) 1/400V	Dimensions Dia/H (mm)		ht (kg) //400V
H010	21	250	0,75	230/400	2	5,9	2,20	98/698	13,0	11,5
H015	35	250	1,1	230/400	2	8,6	3,00	98/801	14,8	14,0
H 020	50	250	1,5	230/400	2	10,7	4,10	98/914	16,9	14,9
H 030	71	250	2,2	230/400	2	14,8	5,60	98/1171	22,9	18,8
H 040	100	250	3	400	2	-	7,50	98/1288	-	21,9
H 055	135	250	4	400	2	-	9,80	98/1624	-	27,7
H075	192	250	5,5	400	2	-	12,7	98/2044	-	36,4
H 100	251	250	7,5	400	2	-	16,9	98/2523	-	43,9

MARAMET	ERS									
Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)		rage (A) //400V	Dimensions Dia/H (mm)		ht (kg) /400V
L 020	36	400	1,5	230/400	2	10,7	4,10	98/889	16,3	14,3
L 030	50	400	2,2	230/400	2	14,8	5,60	98/1119	21,8	16,9
L 040	72	400	3	400	2	-	7,50	98/1259	-	20,7
L 055	100	400	4	400	2	-	9,80	98/1567	-	25,8
L 075	137	400	5,5	400	2	-	12,7	98/1971	-	34,0
L 100	180	400	7,5	400	2	-	16,9	98/2417	-	40,7

IBO ITALY FP4 Q ITALIAN STAINLESS STEEL DEEP WELL PUMPS

WITH DRY RUN PRO TECHNOLOGY

POMPA O PODWYŻSZONEJ OPOPRONOŚCI NA PIASEK

MARAMETERS

Name	Head (m)	Flow (l/min)	Motor power (kW)	Voltage (V)	Inlet/outlet (inch)		rage (A) /400V	Dimensions Dia/H (mm)		ht (kg) /400V
Q15	24	500	1,1	230/400	2	8,6	3,00	98/833	14,8	14,0
Q20	30	500	1,5	230/400	2	10,7	4,10	98/934	16,7	14,7
Q30	48	500	2,2	230/400	2	14,8	5,60	98/1236	22,8	17,9
Q40	65	500	3	230/400	2	-	7,50	98/1396	-	22,0
Q55	89	500	4	400	2	-	9,80	98/1766	-	27,8
Q75	119	500	5,5	400	2	-	12,7	98/2204	-	36,3
Q100	161	500	7,5	400	2	-	16,9	98/2693	-	43,4

IBO ITALY AP6 F

ITALIAN STAINLESS STEEL DEEP WELL PUMPS

Following the FP4 series, the AP6 pumps intended for 6-inch wells are another very successful design of the leading Italian pump manufacturer. Their high quality and reliable design created by Italian engineers ensures long-term and faultless operation. High quality inlet and outlet castings are made of AISI 304 stainless steel. The pumps are equipped with 3 inch diameter outlets and a built-in check valve. Pumps with dedicated 5.5 kW motors have NEMA standard inlets designed for connecting 4-inch motors. Pumps with 7.5 kW motors have inlets designed for connecting 6-inch motors. The maximum outer diameter including cable protector is 144 mm. The pump shaft rotates anticlockwise when viewed at the outlet from above. The water surface should not be lower than 1 m above the inlet. The pump is suitable for vertical and horizontal operation. The AP6 pumps can be used in households and on farms, in water supply systems, irrigation systems, fire extinguishing systems and industrial applications.

- Operating conditions: Maximum liquid temperature 350C
 - Maximum ambient temperature 350C
 - **Class F Insulation**
 - Operating mode continuous
 - Protection IP68

Materials:

- Inlet/outlet: stainless steel AISI 304
- Non-return valve: stainless steel AISI 304
- Housing: stainless steel AISI 304
- Shaft and rotor: stainless steel AISI 304
- Venturi tube cover: stainless steel AISI 304
- Venturi tube: PA

AP6 E2 AP6 E3 AP6 E4 AP6 E5	1,5	l/min 50 l/sec 0,83	75	100	125																						63	66
AP6 E3 AP6 E4 AP6 E5	1,5	l/sec 0,83			12.5	150	175	200	225	250	275	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
AP6 E3 AP6 E4 AP6 E5			1,25	1,67	2,08	2,50	2,92	3,33	3,75	4,17	4,58	5,00	5,83	6,67	7,50	8,33	9,17	10,0	10,8	11,7	12,5	13,3	14,2	15,0	15,8	16,7	17,5	18,3
AP6 E4 AP6 E5						25	24	24	23	22	21	20	18	15	13	10	7	4										
AP6 E5	2,2					38	37	35	34	33	32	30	27	23	19	15	10	5										
	3					50	49	47	46	44	42	40	36	31	26	20	14	7										
	4					63	61	59	57	55	53	50	45	39	32	25	17	9										
	7,5					125	122	118	114	110	105	100	89	77	64	50	34	18										
	11					188	183	177	171	164	158	150	134	116	96	75	51	27										
AP6 E20 AP6 E25	15 18,5					251 314	244 305	236 296	228 285	219 274	210 263	200 250	178 223	154 193	128 160	100 125	69 86	36 45										
AP6 E30SD	22					376	366	355	342	329	315	300	268	232	192	149	103	54										
	26					439	427	414	399	383	368	350	312	270	224	174	120	63										
	30					502	488	473	456	438	420	400	357	309	256	199	137	72										
AP6 E50SD	37					627	610	591	571	548	525	500	446	386	320	249	172	90										
AP6 E58ST	45					727	707	686	662	635	609	579	517	448	371	289	199	104										
AP6 F3	3							40	39	38	36	35	32	29	25	21	16	10	4									
AP6 F4	4							53	52	50	49	47	43	39	33	27	21	13	5									
	5,5							79	77	75	73	70	65	58	50	41	31	20	8									
	7,5							106	103	100	97	94	86	77	67	55	42	27	11									
	9,2							132	129	125	121	117	108	97	84	69	52	34	14									
	11							159	155	150	146	141	129	116	100	82	63	40	16									
	13							185	180	175	170	164	151	135	117	96	73	47	19									
	15							212	206	200	194	187	172	154	134	110	83	54	22									
	18,5							264	258	251	243	234	215	193	167	137	104	67	27									
AP6 F24 AP6 F28SD	22 26							317 370	309 361	301 351	291 340	281 328	258 301	232 270	200 234	164 192	125 146	81 94	32 38									
AP6 F32SD	30							423	412	401	388	375	344	309	254	219	140	108	43									
	37	н						529	515	501	486	468	430	386	334	274	208	134	54									
AP6 F46SD	45	(m)						608	592	576	558	539	495	444	384	315	240	155	62									
AP6 H2	3							000	552	570	550	28	27	26	25	23	21	19	16	13	10	7	3					
AP6 H3	4											42	40	39	37	35	32	28	24	20	15	10	4					
AP6 H4	5,5											55	54	52	49	46	42	38	32	26	20	13	6					
AP6 H5	7,5											69	67	65	62	58	53	47	40	33	25	17	7					
AP6 H6	9,2											83	81	78	74	70	64	57	48	39	30	20	8					
	11											111	108	104	99	93	85	76	65	53	40	26	11					
	13											125	121	117	111	104	96	85	73	59	45	30	13					
AP6 H10	15											139	135	130	124	116	106	95	81	66	50	33	14					
	18,5											180	175	169	161	151	138	123	105	86	64	43	18					
	22											222	216	208	198	186	170	151	129	105	79	53	22					
AP6 H19 AP6 H22	26											264	256 296	246	235 272	220	202 234	180 208	154	125	94	63	27 31					
	30 37											305 374	296 364	285 350	334	255 313	234 287	208	178 218	145 178	109 134	73 89	31					
	45											444	431	415	396	371	340	302	259	211	154	106	45					
	7,5											444	431	47	45	42	39	36	33	31	28	26	24	21	18	14	9	4
	9,2													70	68	63	58	54	50	46	43	39	36	32	27	21	14	6
	11													82	79	74	68	63	58	54	50	46	42	37	32	25	16	7
AP6 L8	13													93	90	84	78	72	66	61	57	53	48	43	36	28	18	8
	15													105	101	95	88	81	75	69	64	59	54	48	41	32	21	9
	18,5													140	135	126	117	107	99	92	85	79	72	64	54	42	28	12
AP6 L14	22													163	158	147	136	125	116	108	100	92	84	74	63	49	32	14
AP6 L17	26													198	191	179	165	152	141	131	121	112	102	90	77	60	39	17
AP6 L19	30													221	214	200	185	170	157	146	135	125	114	101	86	67	44	19
AP6 L24S	37													280	270	252	234	215	199	184	171	158	144	128	108	84	55	24
AP6 L28SD	45													326	315	294	272	251	232	215	199	184	168	149	126	98	64	28

Name	Flow (I/min)	Head (m)	Motor power (kW)	Inlet/outlet (inch)	Motor diameter (inch)	L1 (mm)	Weight (kg)	Amperage (A) 400V
AP6 E2	600	28	1,5	3	4	787	19	4,6
AP6 E3	600	42	2,2	3	4	879	22	6,2
AP6 E4	600	56	3	3	4	934	24	7,8
AP6 E5	600	70	3,7	3	4	1.041	26	9,8
AP6 E10	600	140	7,5	3	6	1.542	74	18
AP6 E15	600	210	11	3	6	1.912	90	26
AP6 E20	600	280	15	3	6	2.339	99	34
AP6 E25	600	350	18,5	3	6	2.713	120	41
AP6 E30SD	600	420	22	3	6	3.221	145	49
AP6 E35SD	600	490	26	3	6	3.601	161	57
AP6 E40SD	600	560	30	3	6	4.030	173	67
AP6 E50SD	600	700	37	3	6	4.632	190	74
AP6 E58SD	600	812	45	3	6	5.048	196	95

Name	Flow (l/min)	Head (m)	Motor power (kW)	Inlet/outlet (inch)	Motor diameter (inch)	L1 (mm)	Weight (kg)	Amperage (A 400V
AP6 F3	650	46	3	3	4"	879	23	7,8
AP6 F4	650	61	4	3	4"	984	26	9,8
AP6 F6	650	92	5,5	3	4"	1.168	32	13,8
AP6 F8	650	122	7,5	3	6"	1.428	72	18
AP6 F10	650	153	9,2	3	6"	1.582	79	22
AP6 F12	650	184	11	3	б"	1.741	86	26
AP6 F14	650	214	13	3	6"	1.900	93	30
AP6 F16	650	245	15	3	6"	2.059	99	34
AP6 E20	650	306	18,5	3	6"	2.429	115	41
AP6 E24	650	367	22	3	6"	2.741	128	49
P6 F28SD	650	428	26	3	6"	3.202	153	57
.P6 F32SD	650	490	30	3	б"	3.470	161	67
P6 F40SD	650	612	37	3	6"	3.958	196	74
P6 F46SD	650	704	45	3	6"	4.374	182	95

IBO ITALY AP6 H

PARAMETERS

Name	Flow (I/min)	Head (m)	Motor power (kW)	Inlet/outlet (inch)	Motor diameter (inch)	L1 (mm)	Weight (kg)	Amperage (A) 400V
AP6 H2	850	31	3	3	4	828	21	7,8
AP6 H3	850	47	4	3	4	936	25	9,8
AP6 H4	850	62	5,5	3	4	1.066	29	13,8
AP6 H5	850	78	7,5	3	6	1.272	68	18
AP6 H6	850	93	9,2	3	6	1.372	74	22
AP6 H8	850	124	11	3	6	1.537	81	26
AP6 H9	850	140	13	3	6	1.642	87	30
AP6 H10	850	155	15	3	6	1.747	92	34
AP6 H13	850	202	18,5	3	6	2.017	106	41
AP6 H16	850	248	22	3	6	2.282	118	49
AP6 H19	850	295	26	3	6	2.609	134	57
AP6 H22	850	341	30	3	6	2.829	141	67
AP6 H27S	850	419	37	3	6	3.160	157	74
AP6 H32SD	850	496	45	3	6	3.672	169	95

I PARAMETERS	5
--------------	---

Name	Flow (l/min)	Head (m)	Motor power (kW)	L1 (mm)	Weight (kg)	N	Motor diameter (inch)	Weight (kg)	Amperage (A) 400V
AP6 L4	1100	52	7,5	528	10,2	1.760	6	67	18
AP6 L6	1100	77	9,2	648	12,2	2.640	6	74	22
AP6 L7	1100	90	11	708	12,9	3.070	6	80	26
AP6 L8	1100	103	13	768	13,8	3.510	6	86	30
AP6L9	1100	116	15	828	14,8	3.950	6	91	34
AP6 L12	1100	155	18,5	1.008	15,7	5.270	6	103	41
AP6 L14	1100	181	22	1.128	17,8	6.140	6	114	49
AP6 L17	1100	219	26	1.308	21,9	7.460	6	128	57
AP6 L19	1100	245	30	1.480	26,8	8.340	6	137	67
AP6 L245	1100	310	37	1.779	37,1	10.530	6	153	74
AP6 L285	1100	361	45	1.959	41,7	12.290	6	158	95

IBO ITALY FX6 / FX8 / FX10

Top quality cast iron deep well pumps made in Italy. Pump hydraulic components are made of cast iron, and upon customer's request brass impellers can be installed. The pump has 5"diameter outlet (DN 125), and depending on the user's requirements, it can be threaded or flanged. For pumps up to 26 kW, 6 "(144 mm) motors are mounted, for 8" pumps over 26 kW, 8 "(193 mm) motors are mounted. Maximum pump diameter including cable protector is: for 6" pumps – 153mm, 8" pumps - 193 mm, 10" pumps – 245mm. Pumps are available on request, delivery time from 7 to 21 days.

APPLICATION:

- farms,
- water supply systems,
- irrigation systems,
- · fire extinguishing systems,
- industrial applications.

Item	PART NAME	MATERIAL					
1130	Inlet	G25 cast iron					
1170	Venturi tube	G25 cast iron					
1500	Sealing ring II	PU 45 shD / (FX10 bz.B8)					
1610	Venturi tube sleeve	PU 45 shD					
2110	Shaft	AISI 420					
2261	Impeller	G25 cast iron / B.0 bronze					
2410	Sliding sleeve	OT58 chrome					
2460.1	Bottom bearing retainer	AISI 316					
2460.2	Spacing sleeve	AISI 316					
2460.3	Upper bearing retainer	AISI 316					
2460.4	Spacer	AISI 316					
2910	Shaft bolt+washer	AISI 304-420					
3312	Bronze sleeve	B8 bronze					
3312.1	Sliding sleeve	PU 45 shD					
4511	O-ring	NBR					
6310	Threaded outlet	G25 cast iron					
6310*(FX8)	Flanged outlet	G25 cast iron					
6320	Valve sealing	NBR					
6330	Non-return valve	G25 cast iron / AISI 304					
6340	Valve support	G25 cast iron					
6360	Spring	AISI 302					
6531	Filter mesh	AISI 304					
6576	Bolt	AISI 304					
7000	Clutch	AISI 420					
8361	Cable protector	AISI 304					

IBO ITALY FX 6

	PARAMETERS	1
11111.		- 2

						m3/h	0	30	33	36	39	42	45	48	51	54	60	66	72	78	84	90	96
TYPE	kW	Motor diameter	Length L(mm)	Weight (kg)	Ampe- rage (A)	l/min	0	500	550	600	650	700	750	800	850	900	1000	1100	1200	1300	1400	1500	160
		alameter	2()	(rig)		l/sec	0	8,33	9,17	10,0	10,8	11,7	12,5	13,3	14,2	15,0	16,7	18,3	20,0	21,7	23,3	25,0	26
FX6 65/2	4	6"	1076	68	11		33	27	27	26	25	25	24	23	22	21	19	17	14	12	8	5	1
FX6 65/3	7,5	6"	1274	86	18		49	41	40	39	38	37	36	35	33	32	29	25	22	17	13	8	1
FX6 65/4	9,2	6"	1422	97	22		65	55	53	52	51	49	48	46	44	42	38	34	29	23	17	10	1
FX6 65/5	11	6"	1575	108	26		82	68	67	65	63	62	60	58	55	53	48	42	36	29	21	13	4
FX6 65/6	13	6"	1728	119	29		98	82	80	78	76	74	72	69	66	64	57	51	43	35	25	15	
FX6 65/7	15	6"	1881	129	33		114	96	93	91	89	86	83	81	78	74	67	59	50	40	30	18	
FX6 65/8	18,5	6"	2079,0	146,0	41,0		130	109	107	104	101	98	95	92	89	85	77	68	58	46	34	20	(
FX6 65/9	18,5	6"	2187,0	152,0	41,0	н	147	123	120	117	114	111	107	104	100	95	86	76	65	52	38	23	
FX6 65/10	22	6"	2380	167	49	(m)	163	137	133	130	127	123	119	115	111	106	96	85	72	58	42	26	1
FX6 65/11	22	6"	2488	173	49		179	150	147	143	139	135	131	127	122	117	105	93	79	64	47	28	
FX6 65/12	26	6"	2691	189	57		196	164	160	156	152	148	143	138	133	127	115	102	87	69	51	31	1
FX6 65/14	30	6"	2947	205	67		228	191	187	182	177	172	167	161	155	148	134	118	101	81	59	36	1
FX6 65/16	37	6"	3195	223	74		261	219	213	208	202	197	191	184	177	170	153	135	115	92	68	41	1
FX6 65/18	37	6"	3411	235	74		293	246	240	234	228	221	215	207	199	191	172	152	130	104	76	46	1
FX6 65/20	45	6"	3701	247	95		326	273	267	260	253	246	238	230	222	212	192	169	144	116	85	51	1
X6 65/22	45	6"	3917	259	95		359	301	293	286	278	271	262	253	244	233	211	186	159	127	93	56	1

IBO ITALY FX 8

(Å) L (mm) (kg)	3000 3200 3500 50,0 53,3 58,3 60,0 59,3 58,3 61,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0 61,0 50,0 50,0 50,0
Image: Normal and the set of the se	
FX8 70/2 (M) 75 18 1.276 101 75 14 127 101 75 14 127 101 75 13 127 143 64 64 60 57 53 40 45 41 37 32 27 22 11 1.5 1.6	
K8 20/3 (6) 11 26 1.498 122 K8 20/3 (6) 15 33 1.719 143 66 60 57 53 49 45 41 57 22 11 1.6 1.6 K8 20/3 (6) 15 33 1.719 143 165 41 1.943 165 K8 70/3 (6) 22 49 2.162 186 111 107 101 95 89 82 76 68 61 53 44 23 18 24 18 K8 70/7 (6) 26 57 2.391 207 161 171 195 18 106 96 85 75 64 51 26 10 10 111 107 101 95 10 172 164 151 137 122 107 147 111 107 149 141 132 121 101 103 112 100 98 85 75 64 51 03 10 104 101 101 101	
FX8 70/5 (c) 18,5 41 1,943 165 FX8 70/6 (c) 22 49 2,162 186 FX8 70/6 (c) 22 49 2,162 186 FX8 70/6 (c) 22 49 2,162 186 FX8 70/6 (c) 26 57 2,391 207 FX8 70/8 30 62 2,471 257 FX8 70/9 37 77 2,632 274 125 170 161 151 142 131 106 98 85 75 64 51 26 26 27 263 27 FX8 70/10 45 87 2,824 297 253 192 181 170 159 148 136 123 110 96 82 66 33 44 40 <t< td=""><td></td></t<>	
FX8 70/6 (G') 22 49 2,162 186 FX8 70/6 (G') 26 57 2,39 207 FX8 70/7 (G') 26 57 2,39 207 FX8 70/8 30 62 2,471 257 FX8 70/9 37 77 2,632 274 FX8 70/9 37 77 2,632 274 FX8 70/10 45 87 2,824 297 FX8 70/11 45 87 2,828 308 FX8 70/12 52 100 3,848 339 FX8 70/13 52 100 3,848 339 FX8 70/14 56 100 3,488 366 277 261 246 230 211 191 170 150 133 138 46 150 144 146 146 128 199 88 44 40 </td <td></td>	
FX8 707/6" 26 57 2,391 207 FX8 707/8 30 62 2,471 257 FX8 707/8 30 62 2,471 257 FX8 707/8 30 62 2,471 257 FX8 707/9 37 77 2,632 274 FX8 707/1 45 87 2,824 297 FX8 707/1 45 87 2,824 297 181 170 159 148 136 123 110 96 82 66 33 44 44 44 41 32 124 115 106 96 85 73 59 29 10 10 10 98 85 73 59 29 10 10 1	
FK8 70/8 30 62 2.471 257 FK8 70/9 37 77 2.632 274 FK8 70/1 45 87 2.824 297 FK8 70/12 52 100 3.084 339 2.26 210 189 170 159 180 166 150 134 117 100 81 40 FK8 70/13 52 100 3.64 339 2.66 2.11 2.12 2.10 180 166 150 134 117 100 81 40 FK8 70/13 52 100 3.64 338 2.66 2.41 2.27 2.12 197 181 164 146 146 148 18 40 FK8 70/13 52 103 3.86 410	
FX8 70/10 45 87 2.824 297 FX8 70/11 45 87 2.958 308 FX8 70/12 52 100 3.04 339 2.4 221 208 195 180 166 150 134 117 100 81 40	
FX8 70/11 45 87 2.958 308 FX8 70/12 52 100 3.084 339 2.24 2.27 2.12 197 181 164 128 109 88 44 C C FX8 70/12 52 100 3.084 339 2.56 2.41 2.27 2.12 197 181 164 146 128 109 88 44 C	Conter Conter
FX8 70/12 52 100 3.084 339 FX8 70/13 52 100 3.218 350 FX8 70/14 56 110 3.482 367 261 246 230 213 196 177 159 139 118 96 48 44 40 48 44 48 44 <td></td>	
FX8 70/13 52 100 3.218 350 277 261 246 230 213 196 177 159 139 118 96 48 FX8 70/14 56 110 3.462 367 344 292 226 248 220 211 191 171 149 127 103 51 FX8 70/15 60 113 3.649 381 410 422 302 281 266 246 227 205 183 160 137 110 55	
FX8 70/15 60 113 3,649 383 FX8 70/16 67 130 3,861 410 FX8 90/1 5,5 15 1,092 83 FX8 90/2 9,2 22 1,316 106 FX8 90/3 15 33 1,585 131 FX8 90/4 18,5 41 180 45 43 41 40 38 37 35 33 31 30 28 23 18 13 FX8 90/4 18,5 41 180 154 110 90 86 83 80 76 73 70 66 63 59 55 46 32 FX8 90/6 30 62 203 234 100 96 91 87 83 78 74 69 58 45 32 FX8 90/6 <td>-ando in Half</td>	-ando in Half
FX8 70/16 67 130 8,861 410 FX8 90/1 5,5 15 1,092 83 FX8 90/2 9,2 22 1,316 106 FX8 90/3 15 33 1,585 131 FX8 90/4 18,5 41 1,80 41 40 38 37 55 33 31 30 28 23 18 13 FX8 90/3 15 33 1,585 131 140 38 37 55 52 50 47 44 41 35 27 19 FX8 90/5 26 57 2,123 184 100 96 61 57 55 45 43 41 40 38 37 55 52 50 47 44 41 35 27 19 FX8 90/5 26 57 2,123 184 110 90 86 83 80 76 73 70 66 63 59 55 46 36 25 25 56	and the second
FX8 90/1 5,5 15 1,092 83 FX8 90/2 9,2 22 1,316 106 FX8 90/2 9,2 22 1,316 106 FX8 90/2 9,2 22 1,316 106 FX8 90/3 15 33 1,585 131 FX8 90/4 18,5 41 1,80 16 55 45 43 41 40 38 37 35 33 31 30 28 23 18 13 FX8 90/3 15 33 1,585 131 110 90 86 62 60 57 55 52 50 47 44 41 35 27 19 FX8 90/4 18,5 41 1,809 154 110 90 86 83 80 76 73 70 66 63 59 55 46 36 25 FX8 90/6 30 62 203 234 110 100 96 91 87 83 78 78 83	Titely
FX8 90/2 9,2 2.2 1,316 106 FX8 90/3 15 33 1,585 131 FX8 90/3 15 33 1,585 131 FX8 90/3 15 33 1,585 131 FX8 90/4 18,5 41 180 62 60 57 55 52 50 47 44 41 35 27 19 FX8 90/4 18,5 41 1809 154 110 90 86 83 80 76 73 70 66 63 59 55 46 36 25 FX8 90/6 30 62 203 234 110 90 86 83 80 76 73 70 66 63 59 55 46 36 25 FX8 90/6 30 62 203 234 110 100 96 91 87 83 78 74 69 58 45 32 FX8 90/7 37 77 2,364 253 157 <td>SEC?</td>	SEC?
FX8 90/4 18,5 41 1,809 154 FX8 90/4 18,5 41 1,809 154 FX8 90/5 26 57 2,123 184 138 112 108 104 100 96 91 87 83 78 74 69 58 45 32 FX8 90/6 30 62 2,203 234 165 135 129 124 119 115 110 105 99 94 89 83 69 54 38 FX8 90/7 37 77 2,364 253 157 151 145 139 134 128 122 116 110 103 96 81 63 44 FX8 90/8 45 81 2,55 278 20 179 172 166 159 153 146 139 132 125 118 110 93 72 50	
FX8 90/5 26 57 2,123 184 I38 112 108 100 96 91 87 83 78 74 69 58 45 32 FX8 90/6 30 62 2,203 234 165 135 129 124 119 115 110 105 99 94 89 83 69 54 38 FX8 90/7 37 77 2,364 253 157 151 145 139 124 128 122 116 110 103 96 81 63 44 FX8 90/8 45 81 2,55 278 20 179 172 166 159 153 146 139 132 125 118 110 93 72 50	17.000 (Date)
FX8 90/6 30 62 2,203 234 FX8 90/7 37 77 2,364 253 FX8 90/8 45 81 2,55 278 200 179 172 166 159 154 110 105 99 94 89 83 69 54 38 FX8 90/7 37 77 2,364 253 157 151 145 139 134 128 122 116 110 103 96 81 63 44 FX8 90/8 45 81 2,55 278 20 179 172 166 159 153 146 139 132 125 118 110 93 72 50	TTP
FX8 90/7 37 77 2,364 253 193 157 151 145 139 134 128 122 116 110 103 96 81 63 44 FX8 90/7 37 81 2,55 278 20 179 172 166 159 153 146 139 132 125 118 110 93 72 50	
	The for
FX8 90/9 45 87 2,69 291 248 202 194 187 179 172 164 157 149 141 133 124 104 81 57	Martin -
	1.50-100-0
FX8 90/10 52 100 2,816 324 275 224 216 207 199 191 183 174 166 157 148 138 116 91 63 FX8 90/11 56 110 3,08 342 303 247 237 228 219 210 201 192 182 172 162 151 127 100 69	ALIA
FX890/12 60 113 3,247 361 330 269 259 249 239 229 219 209 199 188 177 165 139 109 76	10000 - 10000
FX8 90/13 67 130 3,459 389 358 291 280 269 259 248 237 226 215 204 192 179 151 118 82	La la
FX8.90/14 75 138 3,664 417 385 314 302 290 279 267 256 244 232 220 207 193 162 127 88	
FX890/15 75 143 3,798 430 413 336 323 311 299 287 274 261 248 235 221 206 174 136 95 FX890/16 82 158 4,003 459 440 359 345 332 318 306 292 279 265 251 236 220 185 145 101	-5-0-
FX8 110/1 5,5 15 1,092 83 (m) 27 22 21 20 19 18 17 16 15 13 11 9 7 4	
FX8 110/2 11 26 1,361 111 53 43 42 40 39 37 36 34 32 30 26 22 18 13 8	
FX8 110/3 18,5 41 1,675 142 80 65 63 61 58 56 53 51 48 45 39 33 27 20 12	
FX8 110/4 22 49 1,894 163 107 86 84 81 78 74 71 68 64 60 53 44 36 26 16 FX8 110/5 26 57 2,123 184 133 108 105 101 97 93 89 85 80 75 66 55 45 33 21	
FX8110/6 37 77 2,23 240 160 130 125 121 116 112 107 102 96 91 79 67 54 40 25	
FX8 110/7 45 87 2,422 262 187 151 146 141 136 130 125 119 112 106 92 78 63 46 29	
FX8 110/8 45 87 2,556 274 213 173 167 161 155 149 142 136 128 121 105 89 71 53 33	
FX8 110/9 52 100 2,682 304 240 194 188 182 175 167 160 152 144 136 118 100 80 59 37 FX8 110/10 56 110 2,946 321 267 216 209 202 194 186 178 169 160 151 131 111 89 66 41	
FX8 110/11 60 113 3,113 337 293 238 230 222 213 205 196 186 176 166 144 122 98 73 45	
FX8 110/12 67 130 3,325 364 320 259 251 242 233 223 214 203 192 181 158 133 107 79 49	
FX8 110/13 75 143 3,53 389 347 281 272 262 252 242 231 220 208 196 171 144 116 86 53 FX8 110/14 82 158 3,735 416 374 303 293 282 272 260 249 237 224 211 184 155 125 92 57	
FX8 110/14 82 158 3,735 416 374 303 293 282 272 260 249 237 224 211 184 155 125 92 57 FX8 110/15 82 158 3,669 427 400 324 314 303 291 279 267 254 240 126 134 99 62	
FX8 110/16 93 184 4,118 463 427 346 334 323 310 298 285 271 256 241 210 177 143 106 66	
EX8110/17 93 184 4,252 483 453,56 367,4 355,3 342,9 329,8 316,2 302,6 288 272,3 256 233,3 188,4 151,8 112 70	
FX8 130/1 9,2 22 1,182 94 29 24 23 22 22 21 21 20 18 17 16 14 13 12 FX8 130/2 18,5 41 1,541 131 57 47 46 45 44 42 40 39 36 34 31 29 26 23	10 8 4 20 16 7
FX8 130/2 16,5 41 1,54 131 57 47 46 45 44 42 40 39 36 34 31 29 20 23 FX8 130/2 26,0 57,0 1,9 161,0 86 71 69 67 65 63 61 59 55 50 47 43 39 35	20 16 7 29 23 11
FX8 130/4 37,0 77,0 2,0 215,0 115 94 92 89 87 84 82 79 73 67 62 57 52 46	39 31 14
FX8 130/5 45 87 2,154 237 144 118 118 112 109 106 103 99 91 84 78 72 66 58	49 39 18
FX8 130/6 52 100 2,28 270 172 141 138 134 131 127 123 118 109 101 93 86 79 70 5(9) 120/7 60 112 2577 201 165 161 156 152 142 132 137 117 100 100 93 81	59 47 22 60 55 25
FX8 130/7 60 113 2,577 291 201 165 161 156 152 148 143 138 127 117 109 100 92 81 FX8 130/8 67 130 2,789 318 230 188 184 179 174 169 164 158 146 134 124 114 105 93	69 55 25 78 62 29
FX8130/9 75 143 2.94 343 258 258 212 207 201 196 190 184 177 164 151 140 129 118 104	88 70 32
FX8 130/10 82 158 3,199 370 287 235 230 224 218 211 204 197 182 168 155 143 131 116	98 78 36
	108 86 40
	118 94 43 127 101 47
	137 109 50
FX8 130/15 130 242 4,149 634 431 353 344 335 326 317 307 296 273 252 233 215 197 174	147 117 54

170

IBO ITALY FX"10

ТҮР	Power (kW)	Power (hp)	Stages	Amperage (A)	Thrust load (N)	Motor diameter	Height L(mm)	Weight (kg)
FX10 150/1	15	20	1	34	6200	6"	1730	135
FX10 150/2	30	40	2	62	12400	8"	2115	222
FX10 150/3	45	60	3	87	18600	8"	2370	260
FX10 150/4	60	80	4	113	24700	8"	2695	310
FX10 150/5	75	100	5	143	30900	8"	3014	360
FX10 150/6	92	125	6	184	37100	8"	3370	420
FX10 150/7	110	150	7	220	43300	10"	3505	565
FX10 170/1	13	17,5	1	30	4900	6"	1685	131
FX10 170/2	26	35	2	57	9700	6"	2170	186
FX10 170/3	37	50	3	77	14500	8"	2310	249
FX10 170/4	52	70	4	100	19300	8"	2530	300
FX10 170/5	67	90	5	130	24200	8"	2940	346
FX10 170/6	82	110	6	158	29000	8"	3255	396
FX10 170/7	92	125	7	184	33800	8"	3540	441
FX10 170/8	110	150	8	219	38600	10"	3670	586
FX10 190/1	18,5	25	1	41	5600	6"	1820	146
FX10 190/2	45	60	2	87	11200	8"	2200	239
FX10 190/3	59	80	3	130	16800	8"	2610	304
FX10 190/4	81	110	4	184	22400	8"	3030	378
FX10 190/5	110	150	5	219	28000	10"	3165	523
FX10 190/6	132	180	6	260	33600	10"	3535	603
FX10 190/7	147	200	7	295	39200	10"	3780	645
FX10 210/1	22	30	1	49	5600	6"	1900	155
FX10 210/2	45	60	2	87	11100	8"	2200	239
FX10 210/3	67	90	3	113	16600	8"	2525	289
FX10 210/4	92	125	4	158	22100	8"	2915	354
FX10 210/5	110	150	5	219	27700	10"	3165	523
FX10 210/6	132	180	6	260	33200	10"	3535	603
FX10 210/7	150	200	7	295	38700	10"	3780	645

			m3/h	0	72	84	96	108	120	132	144	156	168	180	210	240	270	300	330
ТҮР	HP	kW	l/min	0	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3500	4000	4500	5000	5500
			l/sec	0	20,0	23,3	26,7	30,0	33,3	36,7	40,0	43,3	46,7	50,0	58,3	66,7	75,0	83,3	91,7
FX10 150/1	20	15		48	38	36	34	33	31	29	27	25	22	19	11				
FX10 150/2	40	30		95	75	72	69	65	62	58	53	49	44	38	21				
FX10 150/3	60	45		143	113	108	103	98	92	86	80	74	66	57	32				
FX10 150/4	80	59		190	150	142	137	130	123	115	107	98	88	76	42				
FX10 150/5	100	75		238	188	180	172	163	154	144	134	123	110	95	53				
FX10 150/6	125	92		285	225	216	206	196	185	173	160	147	132	114	63				
FX10 150/7	150	110		333	263	251	240	228	216	202	187	172	154	133	74				
FX10 170/1	17,5	13		37			28	26	25	24	22	21	20	18	14	10	6		
FX10 170/2	35	26		74			55	53	50	47	45	42	39	36	28	20	11		
FX10 170/3	50	37		111			83	79	75	71	67	63	59	55	43	30	17		
FX10 170/4	70	52		148			111	106	100	95	89	84	79	73	57	40	23		
FX10 170/5	90	67		186			139	132	125	119	112	105	98	91	71	50	29		
FX10 170/6	110	82		223			166	159	150	142	134	126	118	109	85	59	34		
FX10 170/7	125	92		260			194	185	176	166	156	147	138	127	99	69	40		
FX10 170/8	150	110	H (m)	297			222	211	201	190	179	168	157	146	114	79	46		
FX10 190/1	25	18,5		43				35	33	32	31	30	29	28	24	20	15	9	
FX10 190/2	60	45		86				69	67	65	63	60	58	55	48	40	29	18	
FX10 190/3	80	59		129				103	100	97	94	91	87	83	72	59	44	27	
FX10 190/4	110	81		172				138	134	130	125	121	116	111	96	79	59	36	
FX10 190/5	150	110		215				172	167	162	157	151	145	139	121	99	74	45	
FX10 190/6	180	132		258				207	201	194	188	181	174	166	145	119	88	54	
FX10 190/7	200	147		301				241	234	227	219	211	203	194	169	139	103	63	
FX10 210/1	30	22		43					34	33	32	31	30	29	27	24	20	15	9
FX10 210/2	60	45		85					69	67	65	62	60	58	53	47	40	31	18
FX10 210/3	90	67		128					103	100	97	94	90	87	80	71	60	46	26
FX10 210/4	125	92		170					137	132	128	125	120	116	106	94	80	61	35
FX10 210/5	150	110		213					172	166	161	156	151	146	133	118	100	77	44
FX10 210/6	180	132		255					206	200	193	187	181	175	159	142	120	92	53
FX10 210/7	200	147		298					241	233	226	218	211	204	186	165	140	107	62

1

10" ITALIAN DEEP WELL PUMPS

DEEP WELL MOTORS TIEFBRUNNENMOTORE PONORNÉ MOTORY MOTOARE SUBMERSIBILE ГЛУБИННЫЕ ДВИГАТЕЛИ

DEEP WELL MOTORS

3"/ 4" / 6" IBO DEEP WELL OIL-FILLED MOTORS

High-quality, 3, 4, 6 inch diameter deep well oil-filled motors manufactured to NEMA standard.

Top quality materials used to manufacture the motors guarantee their long-term and reliable operation. High mechanical resistance and

very good electrical properties.

Maximum diameter of motors: 3" - 75 mm / 4" - 98 mm / 6" - 145 mm.

OUTER CASING AND BASEPLATE:

Made of AISI 304 stainless steel.

UPPER BEARING RETAINER:

Durable cast iron protected with AISI 304 stainless steel cover. The outer tube is secured by 4 bolts.

MECHANICAL SEAL:

Graphite/ceramics.

BALL BEARINGS:

Properly sized to ensure the motor's long lifespan.

STATOR:

The design provides maximum electrical efficiency. Filled with white, highly refined mineral oil.

SHAFT:

The outer part of the shaft and the splines are made of AISI 304 stainless steel, which provides excellent corrosion resistance and high mechanical resistance required under high dynamic loads.

CABLE GLAND:

The design of the gland prevents the ingress of motor oil into the cable's outer sheath.

100% TESTED:

All engines are tested at the end of the production process. Tests include electrical and mechanical properties, and tightness tests.

Depending on the production batch, the device parameters may differ from the data provided in the table

PARAMETERS

🎆 PARAI	VIETERS				
Name	Power (kW)	Voltage (V/Hz)	Thrust load (N)	Weight (kg)	Amperage (A)
3"0,55	0,55	1 ~ 230/50	1000	8	4,2
3"0,75	0,75	1 ~ 230/50	1500	8,5	5,4
3" 1,1	1,1	1 ~ 230/50	1500	9,5	7,7
4" 0,75	0,75	1 ~ 230/50 lub 3 ~ 400/50	1500	9,5	6,5/3,1
4" 1,1	1,1	1 ~ 230/50 lub 3 ~ 400/50	1500	10,8	8,5/4,0
4" 1,5	1,5	1 ~ 230/50 lub 3 ~ 400/50	1500	12,5	10,5/5,0
4" 2,2	2,2	1 ~ 230/50 lub 3 ~ 400/50	1500	13,9	15,5/6,3
4"3	3	3 ~ 400/50	2500	14,8	7,2
4"4	4	3 ~ 400/50	2500	18	9,2
4"5,5	5,5	3 ~ 400/50	2500	22	12,9
4"7,5	7,5	3 ~ 400/50	2500	28	18,5
6"7,5	7,5	3 ~ 400/50	5500	38	17,5
6"9,2	9,2	3 ~ 400/50	5500	42	21,5
6"11	11	3 ~ 400/50	10000	47	24,5
6"13	13	3 ~ 400/50	10000	52	27,5
6" 15	15	3 ~ 400/50	10000	58	31,5

TECHNICAL DATA:

- Rotational speed: 2850 RPM
- Ingress Protection: IP 68
- Winding insulation class: **B** / **F**
- Maximum immersion depth: 100 m
- Maximum number of motor starts: 20 times per hour
- Permissible voltage fluctuation: + 6 % / 10 %
- Maximum water temperature: 35°C
- Cooling oil used: non-toxic oil

4" ITALIAN DEEP WELL MOTORS

4" ITALIAN DEEP WELL MOTORS 4IOM ITALY - OIL

4" diameter Italian deep well oil-filled motors. High-quality original Italian materials, demanding tests at every stage of manufacturing process, and the expertise of Italian engineers guarantee high mechanical resistance and very good electrical properties of the product. Power cable terminated with removable cable gland provides excellent tightness. Motors diameter: 4" - 95 mm.

OUTER CASING AND BASEPLATE: Made of AISI 304 stainless steel. Outer tube made of AISI 304L (low carbon) steel for greater corrosion protection at the welded joints.

UPPER BEARING RETAINER: Cast iron treated by means of cataphoresis (4 inch motors are additionally protected with AISI 304 stainless steel cover).

MECHANICAL SEAL: Graphite/ceramics standard version or SIC-SIC (silicon carbide/silicon carbide)

BALL BEARINGS: Properly sized to ensure the motor's long lifespan.

STATOR: Special design for maximum electrical efficiency. Filled with white, highly refined mineral oil approved for use in contact with drinking water (F.F.A. approval)

SHAFT: The inner part of the rotor is made of carbon steel alloy in order to improve the electrical properties of the motor. The outer part of the shaft and the splines are made of DUPLEX stainless steel. Such combination provides excellent corrosion resistance and high mechanical resistance

required under high dynamic loads.

REMOVABLE CABLE GLAND: It provides perfect sealing under the toughest conditions and makes it easier to remove cable for maintenance purposes. Power cable is terminated with a removable cable gland for perfect sealing. Power cable is compliant with main drinking water quality standards (KTW, ACS, WRAS)

100% TESTED: All motors are tested at the end of the manufacturing process. Tests include electrical and mechanical properties, and tightness tests.

TECHNICAL DATA:

- Rotational speed: 2850 RPM
- Ingress Protection: IP 68
- Winding insulation class: F
- Maximum immersion depth: 200 m
- Maximum number of motor starts: 30 times per hour
- Permissible voltage fluctuation: + 10 % / 10 %
- Maximum water temperature: 35°C
- Cooling oil used: non-toxic oil
- Installation: horizontal / vertical
- Can be used with inverters.
- can be used with inverters.

IIII PARAMETERS

Name	Power (kW)	Voltage (V/Hz)	Thrust load (N)	Height (mm)	Weight (kg)	In[A] 23	0V/400V
4 IOM-S/T 050	0,37	1 ~ 230/50 lub 3 ~ 400/50	2000	311,3	6,45	3,6	1,8
4 IOM-S/T 075	0,55	1 ~ 230/50 lub 3 ~ 400/50	2000	331,3	7,2	4,7	2
4 IOM-S/T 100	0,75	1 ~ 230/50 lub 3 ~ 400/50	2000	356,3	8,45	5,9	2,5
4 IOM-S/T 150	1,1	1 ~ 230/50 lub 3 ~ 400/50	2000	386,3/371,1	10,2/9,35	8,3	3,4
4 IOM-S/T 200	1,5	1 ~ 230/50 lub 3 ~ 400/50	2000	436,3/386,3	11,65	10,7	4,8
410M-S/T 300*	2,2	1 ~ 230/50 lub 3 ~ 400/50	2000	481,3/436,3	14,9/11,65	15,2	6,1
4 IOM-S/T 400	3	3 ~ 400/50	3000	481,3	14,9	-	7,1
4 IOM-S/T 550	4	3 ~ 400/50	5000	609,5	20,05	-	9,2
4 IOM-S/T 750	5,5	3 ~ 400/50	5000	699,5	24,65	-	11,7
4 IOM-S/T 1000	7,5	3 ~ 400/50	5000	799,5	28,95	-	16,4

6" ITALIAN DEEP WELL MOTORS

6" ITALIAN DEEP WELL MOTORS 6IOM ITALY - OIL

MOTORS FOR 6" WELLS OR LARGER.

High-quality original Italian materials, demanding tests at every stage of manufacturing process, and the expertise of Italian engineers guarantee high mechanical resistance and very good electrical properties of the product. All components that coin contact with water are made of AISI 304 stainless steel. Power cable terminated with removable cable gland provides excellent tightness. **PRODUCT FEATURES:**

OUTER CASING AND BASEPLATE: made of AISI 304 stainless steel Outer tube made of AISI 304L (low carbon) steel for greater corrosion protection at the welded joints.

UPPER BEARING RETAINER: cast iron treated by means of cataphoresis, protected with AISI 304 stainless steel cover. Secured to the outer tube with 8 bolts.

MECHANICAL SEAL: graphite/ceramics standard version: SIC-SIC (silicon carbide/silicon carbide). Special versions on request.

BALL BEARINGS: properly sized to ensure the motor's long lifespan.

STATOR: Special design for maximum electrical efficiency. Filled with white, highly refined mineral oil approved for use in contact with drinking water

(F.F.A. approval).

REMOVABLE CABLE GLAND: it provides perfect sealing under the toughest conditions and makes it easier to remove cable for maintenance purposes. The design of the gland prevents the ingress of motor oil into the cable's outer sheath. Power cable is compliant with main drinking water quality standards (KTW, ACS, WRAS).

SHAFT: the inner part of the rotor is made of carbon steel alloy to improve the electrical properties of the motor. The outer part of the shaft and the splines are made of DUPLEX stainless steel. Such combination provides excellent corrosion resistance and high mechanical resistance required under high holding torque.

100% TESTED: all motors are tested at the end of the manufacturing process. Tests include electrical and mechanical properties, and tightness tests.

TECHNICAL DATA:

- Rotational speed: 2850 RPM
- Ingress Protection: IP 68
- Winding insulation class: F
- Maximum immersion depth: 200 m
- Maximum number of motor starts: 30 times per hour
- Permissible voltage fluctuation: + 10 % / 10 %
- Maximum water temperature: 35°C
- Cooling oil used: non-toxic oil
- Installation: horizontal / vertical
- Can be used with inverters.
- can be used with inverters.

Upon request, 6" 6IOM motors are also available as Y-∆ versions.

MARAMETERS

	,										
Name	Power (kW)	Voltage (V/Hz)	Thrust load (N)	Height (mm)	Weight (kg)	I (Å)	η%	rpm	cos φ	Cable diameter (mm²)	Cable length (m)
6 IOM-750	5,5	3 ~ 400/50	10000	698	41	9,1	74	2840	0,86	4x4	3
6 IOM-1000	7,5	3 ~ 400/50	10000	733	46	12,8	78	2850	0,83	4x4	3
6 IOM-1250	9,2	3 ~ 400/50	10000	773	48	16,8	81	2880	0,77	4x4	3
6 IOM-1500	11	3 ~ 400/50	10000	832	52	21,2	85	2850	0,82	4x4	3
6 IOM-1750	13	3 ~ 400/50	10000	893	57	22,9	84	2860	0,80	4x4	3
6 IOM-2000	15	3 ~ 400/50	10000	893	64	27,6	82	2840	0,86	4x8	4
6 IOM-2500	18,5	3 ~ 400/50	20000	956	64	30,7	84	2850	0,84	4x8	4
6 IOM-3000	22	3 ~ 400/50	20000	1023	79	38	84	2850	0,83	4x8	4
6 IOM-3500	26	3 ~ 400/50	20000	1091	79	52	85	2850	0,85	4x8	3
6 IOM-4000	30	3 ~ 400/50	20000	1171	87	61,5	85	2860	0,83	4x8	4
6 IOM-5000	37	3 ~ 400/50	20000	1306	99	76	84	2840	0,84	4x8	4

max Ø 14

Ø111,1;

Ø76.2

Ø 25.4

6" ITALIAN WATER-COOLED DEEP WELL MOTORS

MOTORS FOR 6" WELLS OR LARGER.

High quality 6 "water-cooled motors made in Italy under the IBO ITALY brand. Their durable design guarantees long-term operation without the need for any maintenance. High-quality original Italian materials, demanding tests at every stage of manufacturing process, and the expertise of Italian engineers guarantee high mechanical resistance and very good electrical properties of the product.

PRODUCT FEATURES:

OUTER CASING AND BASEPLATE: Outer tube made of AISI 304L (low carbon) steel for greater corrosion protection at the welded joints. The baseplate is made of cast iron. UPPER BEARING RETAINER: cast iron treated by means of cataphoresis.

MECHANICAL SEAL: graphite/ceramics standard version: SIC-SIC (silicon carbide/silicon carbide). Special versions on request.

BALL BEARINGS: properly sized to ensure the motor's long lifespan.

STATOR: special design for maximum electrical efficiency. It can be rewound. Cooling is provided by water. The winding is Class Y insulated.

SHAFT: the inner part of the rotor is made of carbon steel alloy to improve the electrical properties of the motor. The outer part of the shaft and the splines are made of DUPLEX stainless steel. Such combination provides excellent corrosion resistance and high mechanical resistance required under high holding torques.

100% TESTED: all motors are tested at the end of the manufacturing process. Tests include electrical and mechanical properties, and tightness tests.

TECHNICAL DATA:

- Rotational speed: 2850 RPM
- Ingress Protection: IP 68
- Winding insulation class: F
- Maximum immersion depth: 100 m
- Maximum number of motor starts: 20 times per hour
- Permissible voltage fluctuation: + 5 % / 5 %
- Maximum water temperature: 30°C
- Cooling liquid: water
- Installation: horizontal / vertical
- Can be used with inverters.

PARAMETERS

MARAINE I E			///////////////////////////////////////							
Name	Power (kW)	ĸw	1 (Å)	Height (mm)	Weight (kg)	Max. water temperature (C)	Maximum number of motor starts: per hour	Thrust load (N)	cos Ø	η%
6IWM-550	5,5	4	10	565	41				80	79
6IWM-750	7,5	5,5	12,5	590	44				81,5	80
6IWM-1000	10	7,5	17	620	48		12		81,5	81
6IWM-1250	12,5	9,2	21	670	53	30		25000	82	82
6IWM-1500	15	11	24,5	730	60	50		23000	82	83
6IWM-1750	17,5	13	28	760	63				82,5	84
6IWM-2000	20	15	32	850	72				83	84
6IMW-2500	25	18,5	40	910	78				83,5	84
6IWM-3000	30	22	47,5	990	88				83,5	85
6IWM-3500	35	26	55	1100	100	30	10	25000	84	85
6IMW-4000	40	30	62,5	1170	107		10	25000	85	85,5
6IWM-5000	50	37	78	1260	115				85	85

8" ITALIAN DEEP WELL MOTORS

8" DEEP WELL WATER-COOLED MOTORS **8IWM ITALY**

High quality 8" water-cooled motors made in Italy under the IBO ITALY brand. Their durable design guarantees long-term operation without the need for any maintenance.

PRODUCT FEATURES

OUTER CASING AND BASEPLATE: Outer tube made of AISI 304L steel for greater corrosion protection at the welded joints. The baseplate is made of cast iron.

UPPER BEARING RETAINER: G25 cast iron

MECHANICAL SEAL: standard version: SIC-NBR-AISI304

BALL BEARINGS: carbon graphite, properly sized to ensure the motor's long lifespan.

STATOR: Special design for maximum electrical efficiency. It can be rewound. Cooling is provided by water. The winding is Class Y insulated. SHAFT: the inner part of the rotor is made of carbon steel alloy to improve the electrical properties of the motor. The outer part of the shaft and the splines are made of DUPLEX stainless steel. Such combination provides excellent corrosion resistance and high mechanical resistance required under high holding torque.

100% TESTED: all motors are tested at the end of the manufacturing process. Tests include electrical and mechanical properties, and tightness tests.

TECHNICAL DATA:

- Rotational speed: 2850 RPM
- Ingress Protection: IP 68
- Winding insulation class: Y
- Maximum immersion depth: 100 m
- Maximum number of motor starts: 7 times per hour
- Permissible voltage fluctuation: + 10 % / 10 %
- Maximum water temperature: 30°C
- · Cooling liquid: water
- Maximum flow: 0.5 m/s
- Installation: vertical
- · Can be used with inverters.

Ø192

Ø152.5 Ø127

Ø38

PARAMETERS

	0	0	Voltage	Thrust load	lth	Weight	4				Cable diameter	Cable length
Name	Power (HP)	Power (kW)	(V)	(N)	Length L(mm)	(Kg)	Amperage In(A)	rpm	cos φ	η%	(mm ²)	(m)
8IMW 30	30	22		38.000	861	121	48	2900	0,85	81	3x4	4
8IMW 40	40	30		38.000	1.075	142	62	2925	0,85	85	3x10	4
8IMW 50	50	37		38.000	1.102	148	77	2900	0,86	85	3x10	4
8IMW 60	60	45		38.000	1.160	159	87	2900	0,87	85	3x10	4
8IMW 70	70	52		38.000	1.152	178	100	2915	0,86	86	3x16	4
8IMW 75	75	55	3~400	38.000	1.282	183	110	2910	0,87	86	3x16	4
8IMW 80	80	60	5~400	38.000	1.315	188	113	2915	0,88	86	3x16	4
8IMW 90	90	66		45.000	1.393	203	130	2910	0,87	86	3x25	4
8IMW 100	100	75		45.000	1.464	217	143	2910	0,87	86	3x25	4
8IMW 110	110	81		45.000	1.535	232	158	2915	0,86	88	3x25	4
8IMW 125	125	92		45.000	1.650	256	184	2930	0,85	86	3x25	4
8IMW 150	150	110		45.000	1.845	295	212	2845	0,87	89	3x35	4

10" ITALIAN DEEP WELL MOTORS

10" DEEP WELL WATER-COOLED MOTORS 10IWM ITALY

101.5±0.

L

MOTORS FOR 10" WELLS OR LARGER.

Top-quality original Italian materials, demanding tests at every stage of manufacturing

process, and the expertise of Italian engineers guarantee high mechanical resistance and very good electrical properties of the product. All components that come in contact with water are made of AISI 304 stainless steel. Power cable terminated with removable cable gland provides excellent tightness.

PRODUCT FEATURES

OUTER CASING AND BASEPLATE: made of AISI 304 stainless steel Outer tube made of AISI 304L (low carbon) steel for greater corrosion protection at the welded joints.

UPPER BEARING RETAINER: cast iron treated by means of cataphoresis, protected with AISI 304 stainless steel cover. Secured to the outer tube with 8 bolts.

MECHANICAL SEAL: graphite/ceramics standard version: SIC-SIC (silicon carbide/silicon carbide). Special versions on request.

BALL BEARINGS: properly sized to ensure the motor's long lifespan.

STATOR: Special design for maximum electrical efficiency. Filled with white, highly refined mineral oil approved for use in contact with drinking water (F.F.A. approval)

REMOVABLE CABLE GLAND: it provides perfect sealing under the toughest conditions and makes it easier to remove cable

for maintenance purposes. The design of the gland prevents the ingress of motor oil into the cable's outer sheath. Power cable is compliant with main drinking water quality standards (KTW, ACS, WRAS).

SHAFT: the inner part of the rotor is made of carbon steel alloy to improve the electrical properties of the motor. The outer part of the shaft and the splines are made of DUPLEX stainless steel. Such combination provides excellent corrosion resistance and high mechanical resistance required under high holding torque.

100% TESTED: all motors are tested at the end of the manufacturing process. Tests include electrical and mechanical properties, and tightness tests.

TECHNICAL DATA:

- Rotational speed: 2850 RPM
- Ingress Protection: IP 68
- Winding insulation class: F
- Maximum immersion depth: 100 m
- Maximum number of motor starts: 5 times per hour
- Permissible voltage fluctuation: + 10 % / 10 %
- Maximum water temperature: 25°C
- · Cooling liquid: water
- Maximum flow: 0.5 m/s
- Installation: vertical
- Can be used with inverters.
- Call be used with invent

Ø240 Ø152.5 Ø127 Ø38

TANKS BEHÄLTER NÁDRŽE REZERVOARE РЕЗЕРВУАРЫ

PRESSURE TANKS HORIZONTAL / HORIZONTAL WITH PRESSURE GAUGE

The 24 - 150 horizontal pressure tanks for storing water in water supply systems. IBO pressure vessels are used to stabilize water pressure and increase the live volume of water supply systems. Designed to operate with pumps with parameters matching the tank parameters. The tanks are made of thick carbon steel and coated with a special anti-corrosion varnish. There are EPDM rubber diaphragms inside the tanks creating a membrane between the water inside it and the outer jacket of the tank. Compressed air between the membrane and the tank body releases water from the tank under pressure. By using tanks in booster sets, the number of pump starts in a given period of time can be limited, which results in the extended lifespan of the entire system. Additionally, 50 and 100 tank models are available with a built-in pressure gauge. The volume of water inside the tank is the difference between the tank body volume and the volume of air around the membrane.

The tanks are equipped with a special valve for filling or releasing air from the tank - the same valve as the one used in car tyres is located at the rear of the tank, under the cover.

IBO pressure vessels are pressure equipment compliant with requirements of Directive 2014/68/EU. APPLICATION:

Connected with surface or deep-well pumps, they create booster sets for supplying water to allotments, single and multi-family houses, farms and enterprises from their own intakes.

PARAI	METERS	

MODEL	Inlet/outlet (inch)	Operating temperature (°C)	Max. tested PT pressure (bar)	Precharge pressure (bar)	Dimension D (mm)	Dimension H (mm)
HORIZONTAL PRESSURE TANK 24	1	0 - 60	8	1,7 +/- 10%	290	440
HORIZONTAL PRESSURE TANK 50	1	0 - 60	8	1,7 +/- 10%	370	525
HORIZONTAL PRESSURE TANK 50 WITH PRESSURE GAUGE	1	0 - 60	8	1,7 +/- 10%	370	525
HORIZONTAL PRESSURE TANK 80	1	0 - 60	8	1,7 +/- 10%	470	595
HORIZONTAL PRESSURE TANK 100	1	0 - 60	8	1,7 +/- 10%	470	645
HORIZONTAL PRESSURE TANK 100 WITH PRESSURE GAUGE	1	0 - 60	8	1,7 +/- 10%	470	645
HORIZONTAL PRESSURE TANK 150	1	0 - 60	8	1,7 +/- 10%	550	870

PRESSURE TANKS VERTICAL / HORIZONTAL WITH PRESSURE GAUGE

The 24 - 150 horizontal pressure tanks for storing water in water supply systems. IBO pressure vessels are used to stabilize water pressure and increase the live volume of water supply systems. Designed to operate with pumps with parameters matching the tank parameters. The tanks are made of thick carbon steel and coated with a special anti-corrosion varnish. There are EPDM rubber diaphragms inside the tanks creating a membrane between the water inside it and the outer jacket of the tank. Compressed air between the membrane and the tank body releases water from the tank under pressure. By using tanks in booster sets, the number of pump starts in a given period of time can be limited, which results in the extended lifespan of the entire system. Additionally, the 50 and 100 tank models are available with a built-in pressure gauge. The volume of water inside the tank is the difference between the tank body volume and the volume of air around the membrane.

The tanks are equipped with a special valve for filling or releasing air from the tank - the same valve as the one used in car tyres is located at the rear of the tank, under the cover.

IBO pressure vessels are pressure equipment compliant with requirements of Directive 2014/68/EU.

APPLICATION:

Connected with surface or deep-well pumps, they create booster sets for supplying water to allotments, single and multi-family houses, farms and enterprises from their own intakes.

Przyłącze

MODEL	Inlet/outlet (inch)	Operating temperature (°C)	Max. tested PT pressure (bar)	Precharge pressure (bar)	Dimension D (mm)	Dimension H (mm)
VERTICAL/HORIZONTAL PRESSURE TANK TYPE 50	1	0 - 60	8	1,7 +/- 10%	380	620
VERTICAL/HORIZONTAL PRESSURE TANK TYPE 80	1	0 - 60	8	1,7 +/- 10%	480	680
VERTICAL/HORIZONTAL PRESSURE TANK TYPE 100	1	0 - 60	8	1,7 +/- 10%	480	760
VERTICAL/HORIZONTAL PRESSURE TANK TYPE 150	1	0 - 60	8	1,7 +/- 10%	550	1040

STAINLESS STEEL INOX HORIZONTAL PRESSURE TANKS

The 24 - 100 horizontal pressure tanks made of AISI 304 stainless steel for storing water in water supply systems. Tank jacket and flange are made of stainless steel. IBO pressure vessels are used to stabilize water pressure and increase the live volume of water supply systems. Designed to operate with pumps with parameters matching the tank parameters. Due to the stainless steel finish, the tanks can be installed in wells and wet rooms without the risk of early corrosion. There are EPDM rubber diaphragms inside the tanks creating a membrane between the water inside it and the outer jacket of the tank. Compressed air between the membrane and the tank body releases water from the tank under pressure. By using tanks in booster sets, the number of pump starts in a given period of time can be limited, which results in the extended lifespan of the entire system. Additionally, the 50 and 100 tank models are available with a built-in pressure gauge. The volume of water inside the tank is the difference between the tank body volume and the volume of air around the membrane.

The tanks are equipped with a special valve for filling or releasing air from the tank - the same valve as the one used in car tyres is located at the rear of the tank, under the cover.

IBO pressure vessels are pressure equipment compliant with requirements of Directive 2014/68/EU. APPLICATION: Connected with surface or deep-well pumps, they create booster sets for supplying water to allotments, single and multi-family houses, farms and enterprises from their own intakes

MODEL	Inlet/outlet (inch)	Operating temperature (°C)	Max. tested PT pressure (bar)	Precharge pressure (bar)	Dimension D (mm)	Dimension H (mm)
HORIZONTAL INOX PRESSURE TANK TYPE 24	1	0 - 60	8	1,7 +/- 10%	300	450
HORIZONTAL INOX PRESSURE TANK TYPE 50	1	0 - 60	8	1,7 +/- 10%	380	530
HORIZONTAL INOX PRESSURE TANK TYPE 80	1	0 - 60	8	1,7 +/- 10%	470	590
HORIZONTAL INOX PRESSURE TANK TYPE 100	1	0 - 60	8	1,7 +/- 10%	480	670

GALVANIZED TANKS

GALVANIZED TANKS

Corrosion-resistant vertical air-over-water tanks made of zinc-coated low-carbon sheet metal. Tank jacket and flange are made of galvanized steel. Galvanized tanks are designed to stabilize water pressure and increase the live volume of water supply systems. Designed to operate with pumps with parameters matching the tank parameters. Due to the galvanized steel finish, the tanks can be installed in wells and wet rooms, and even externally without the risk of early corrosion. The tanks are available in capacity from 100 to 2000 litres. Maximum permissible pressure in the tank is 6 bar. Our offer also includes fittings for galvanized tanks.

APPLICATION:

Water storage. In combination with surface or deep-well pumps used to supply water to single and multi-family houses, farms and in industrial applications. As the only tanks, air-over-water tanks are suitable for installation in water supply systems with block filters and where additional water oxygenation is required.

- 1 G 2" connection
- 2 Rating plate
- 3 G ½" water gauge connection
- 4 G ½"Water gauge connection
- 5 G 2"Connection
- 6 for sizes: 100L, 500L
- G 1 ¼″ inlet (outlet) pipe (1″ for 100L)
- 6 for sizes: 150L, 200L, 300L - G 1 ¼" Inlet
- 6 for sizes: A-1000L, B-1500L, C-2000L - Flow pipe with flange A-DN50/B-DN80/C-DN100
- 7 G 1 ¼" inlet (outlet) pipe (1" for 100L)
- 8 Cleaning hatch
- 9 Clamp

PARAMETERS								
MODEL	н	H2	НЗ	H4	D	Operating pressure (bar)	Max. temperature (°C)	Weight (kg)
100 L	767	360	360	78	500	6	20	28
150 L	967	360	360	72	500	6	20	45
200 L	1066	360	360	84	550	6	20	48
300 L	1354	360	360	84	550	6	20	57
500 L	1439	370	360	91	750	6	20	115
1000 L	1952	638	638	202	908	8	20	208
1500 L	2335	700	638	240	1010	8	20	340
2000 L	2200	660	638	160	1210	10	20	435

IBO ITALY PRESSURE TANKS

IBO ITALY PRESSURE TANKS

High-quality original materials, demanding tests at every stage of manufacturing process, and the expertise of engineers guarantee high resistance to wear. The 24L - 100L horizontal and 150L - 10000L vertical pressure tanks for storing water in water supply systems. IBO ITALY PRZEPONA pressure vessels are used to stabilize water pressure and increase the live volume of water supply systems. Designed to operate with pumps with parameters matching the tank parameters. The tanks are made of thick carbon steel and coated with a special anti-corrosion varnish. There are EPDM rubber diaphragms (manufactured in Italy) inside the tanks creating a membrane between the water inside it and the outer jacket of the tank. Compressed air between the membrane and the tank body releases water from the tank under pressure. By using tanks in booster sets, the number of pump starts in a given period of time can be limited, which results in the extended lifespan of the entire system. Tank volume refers to the body size - the volume of water inside the tank is the difference between the tank body volume and the volume of air around the membrane.

The tanks are equipped with a special valve for filling or releasing air from the tank - the same valve as the one used in car tyres is located at the rear of the tank, under the cover.

IBO pressure vessels are pressure equipment compliant with requirements of Directive 2014/68/EU.

APPLICATION:

Connected with surface or deep-well pumps, they create booster sets for supplying water to allotments, single and multi-family houses, farms and enterprises from their own intakes.

MODEL	Inlet/outlet (inch)	Operating temperature (°C)	Max. operating pressure (bar)	Max. testing pressure (bar)	Precharge pressure (bar)	Dimension D (mm)	Dimension H (mm)
HORIZONTAL IBO ITALY TANK 24L	1	(-10°C) -100°C	10	15	2 +/- 10%	335	465
HORIZONTAL IBO ITALY TANK 50L	1	(-10°C) -100°C	10	15	2 +/- 10%	385	590
HORIZONTAL IBO ITALY TANK 80L	1	(-10°C) -100°C	10	15	2 +/- 10%	445	650
HORIZONTAL IBO ITALY TANK 100L	1	(-10°C) -100°C	10	15	2 +/- 10%	550	680
VERTICAL IBO ITALY TANK 150L	1	(-10°C) -100°C	10	15	3 +/- 10%	510	1090
VERTICAL IBO ITALY TANK 200L	11⁄4	(-10°C) -100°C	10	15	3 +/- 10%	590	1100
VERTICAL IBO ITALY TANK 300L	11⁄4	(-10°C) -100°C	10	15	4 +/- 10%	640	1250
VERTICAL IBO ITALY TANK 500L	11⁄4	(-10°C) -100°C	10	15	4 +/- 10%	750	1550
VERTICAL IBO ITALY TANK 1000L	2	(-10) - (+100)	10	15	4 +/- 10%	800	2200
VERTICAL IBO ITALY TANK 1500L	2	(-10) - (+100)	10	15	4 +/- 10%	960	2350
VERTICAL IBO ITALY TANK 2000L	2	(-10) - (+100)	10	15	4 +/- 10%	1100	2450
VERTICAL IBO ITALY TANK 3000L	3	(-10) - (+100)	10	15	4 +/- 10%	1200	2700
VERTICAL IBO ITALY TANK 5000L	3	(-10) - (+100)	10	15	4 +/- 10%	1450	3400
VERTICAL IBO ITALY TANK 10000L	3	(-10) - (+100)	10	15	4 +/- 10%	1600	5900

IBO ITALY FIX MEMBRANE TANKS

IBO ITALY FIX MEMBRANE TANKS

Horizontal fix membrane pressure tanks for use with drinking water. In order to minimize pump vibration, the tank's baseplate and legs are made of plastic. Tanks are available with 24, 50, 80 and 100 litres capacity. Inside the steel vessel there is a fix membrane made of butyl rubber with high tensile strength and high temperature resistance, separating the liquid from the air.

Tank specification:

- 1" stainless steel connection
- Outer surface with two-coat acrylic epoxy
- and polyurethane paint •
- Compliant with the Pressure Equipment Directive (PED) 2014/68/UE
- . Maximum operating pressure - 10 bar

Membrane specification:

- Made of butyl rubber
- Hygenic approval
- A. Sealed air valve
- B. Two-coat epoxy and polyurethane paint
- C. 1" stainless steel connection
- D. Diameter
- E. Membrane made of approved butyl rubber
- F. Approved outer coating G. Precharge pressure - 2bar
- H. Height

MODEL	Capacity (L)	Pressure (Bar)	Diameter (D)	Height (H)	Precharge pressure (bar)	Inlet/Outlet (inch)
HORIZONTAL IBO ITALY FIX TANK 24L	24	10	425	334	2	1 BSP / NPT
HORIZONTAL IBO ITALY FIX TANK SOL	50	10	570	384	3	1 BSP / NPT
HORIZONTAL IBO ITALY FIX TANK 80L	80	10	670	435	3	1 BSP / NPT
HORIZONTAL IBO ITALY FIX TANK 100L	100	10	712	544	3	1 BSP / NPT

IBO ITALY PRESSURE VESSELS

IBO ITALY CWU PRESSURE VESSELS

High-quality original materials, demanding tests at every stage of manufacturing process, and the expertise of engineers guarantee high resistance to wear. IBO CWU 8L-50L expansion vessels for hot and cold drinking water supply systems, designed to maintain and stabilize the system pressure changes resulting from the increase in water volume. The tanks are made of thick carbon steel and coated with a special anti-corrosion varnish. There are rubber diaphragms (manufactured in Italy) inside the tanks creating a membrane between the water inside it and the outer jacket of the tank. The long-lasting maximum liquid operating temperature is 110°C, and up to 130°C for a period of 2 hours. The tanks are equipped with a special valve for filling or releasing air from the tank - the same valve as the one used in car tyres is located at the rear of the tank, under the cover.

- The outer surface is coated with epoxy powder paint.
- IBO pressure vessels are pressure equipment compliant with requirements of Directive 2014/68/EU
- The vessels can be used with mixtures of ethylene or propylene glycol.
- They have very low gas permeability

APPLICATION:

In hot and cold drinking water supply system to maintain and stabilize the system pressure changes resulting from the increase in water volume.

MODEL	Inlet/outlet (inch)	Operating temperature (°C)	Max. operating pressure (bar)	Max. testing pressure (bar)	Precharge pressure (bar)	Dimension D (mm)	Dimension H (mm)
C.W.U ITALY VESSEL 8L	3⁄4	(-0°C) -100(130)°C	10	15	2,5 +/- 10%	200	330
C.W.U ITALY VESSEL 12L	3⁄4	(-0°C) -100(130)°C	10	15	2,5 +/- 10%	240	360
C.W.U ITALY VESSEL 19L	3⁄4	(-0°C) -100(130)°C	10	15	2,5 +/- 10%	300	365
C.W.U ITALY VESSEL 24L	3⁄4	(-0°C) -100(130)°C	10	15	2,5 +/- 10%	300	430
C.W.U VESSEL 36L	3⁄4	(-0°C) -100(130)°C	10	15	2,5 +/- 10%	350	760
C.W.U VESSEL 50L	3⁄4	(-0°C) -100(130)°C	10	15	2,5 +/- 10%	380	870

IBO ITALY PRESSURE VESSELS

IBO ITALY CO/CWU FIX MEMBRANE PRESSURE VESSELS

Fix membrane vessels - IBO ITALY FIX

- Pressure vessel used to prevent excessive pressure increase in closed systems IBO ITALY C.O / C.W.U pressure vessel are designed for: • hot and cold drinking water supply systems to maintain and stabilize the system pressure changes resulting from the increase in water
 - volume.
 - heating and solar systems to maintain and stabilize the system pressure changes resulting from the increase in fluid volume and temperature.

Inside the steel vessel there is a fix membrane made of butyl rubber with high tensile strength and high temperature resistance, separating the liquid from the air.

The vessels are intended for systems with the maximum 50% glycol content.. Tank specification:

- 1" thick stainless steel connection
- Outer surface with two-coat acrylic epoxy
- and polyurethane paint
- Compliant with the Pressure Equipment Directive (PED) 2014/68/UE
- Maximum operating pressure 10 bar

Membrane specification:

- Made of butyl rubber
- Hygenic approval

- A. Sealed air valve
- B. Two-coat epoxy and polyurethane paint
- C. 1" thick stainless steel connection
- D. Diameter
- E. Membrane made of approved butyl rubber
- F. Approved outer coating
- G. Precharge pressure 2bar
- H. Height

MODEL	Capacity (L)	Pressure (Bar)	Diameter (D)	Height (H)	Precharge pressure (bar)	Inlet/Outlet (inch)
IBO ITALY FIX 12L CO/CWU tanks	12	10	240	352	2	1 BSP / NPT
IBO ITALY FIX 19L CO/CWU tanks	19	10	270	370	2	1 BSP / NPT
IBO ITALY FIX 24L CO/CWU tanks	24	10	300	425	2	1 BSP / NPT

IBO HEATS PRESSURE VESSELS FOR CENTRAL HEATING SYSTEMS

IBO HEATS pressure vessels are designed for heating and solar systems to maintain and stabilize the system pressure changes resulting from the increase in fluid volume and temperature.

The main function of pressure vessels is to prevent excessive pressure increase in closed systems.

Pressure vessels use air cushion to compensate for changes of the heating medium volume in closed circuits. Inside the steel vessel there is a replaceable EPDM (synthetic rubber) membrane with high tensile strength and high temperature resistance, separating the liquid from the air. The tanks are equipped with a pressure valve to regulated the pressure inside the vessel and a replaceable flange made of galvanized steel with 3/4" inlet/outlet connection.

The vessels are intended for systems with the maximum 50% glycol content. Vessels for suspension: 8L / 12L / 19L / 24L Free-standing vessels: 36L / 50L / 80L / 100L

IBO HEATS pressure vessel are compliant with the Pressure Equipment Directive (PED) 2014/68/UE of the European Parliament and of the Council, as amended.

Н

Model	Operating temperature	Max. operating pressure	Max. Pressure	Precharge pressure	Intel/outlet (inch)	Dimension D (mm)	Dimension H (mm)
IBO HEATS 8L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3/4″	20	33
IBO HEATS 12L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3⁄4″	27	31
IBO HEATS 19L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3⁄4″	27	40
IBO HEATS 24L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3/4″	27	46
IBO HEATS 36L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3⁄4″	35	44
IBO HEATS 50L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3/4″	35	55
IBO HEATS 80L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3⁄4″	45	59
IBO HEATS 100L	0-99°C	8 bar	12 bar	1.7 bar +/- 10%	3⁄4″	45	65

CIRCULATION PUMPS ZIRKULATIONS-/ UMWÄLZPUMPEN OBĚHOVÁ / CIRKULAČNÍ ČERPADLA POMPE DE CIRCULAȚIE ЦИРКУЛЯЦИОННЫЕ НАСОСЫ

MAGI Energy-saving electronic circulation pumps

with A energy-efficiency rating.

Energy Efficiency Index for MAGI pumps is

EEI<=0,20

which according to Commission Regulation (EU) No. 622/2012 is the reference criterion for: the most energy-efficient circulation pumps.

The MAGI circulating pump is equipped with a permanent magnet motor and a pressure differences regulator for automatic and continuous pump capacity adjustment to the actual requirements of the system. The pump control panel is located on top of the motor for easier operation by the user.

Current power consumption is displayed on its panel. The pump is supplied with union joints and cable adapter.

The pump provides 8 operating modes: • AUTO (factory setting)

- From highest to lowest proportional pressure characteristic curve
- BL1 / BL2
 Proportional pressure curves
- HD1 / HD2
 Constant pressure curves
- HS1/HS2/HS3
 - S2/HS3 Constant rotational speed curves.

APPLICATION:

Magi circulation pump is intended for the following systems:

- Constant temperature variable flow heating system
- Variable pipe temperature heating system
- Heating system with night mode
- Air conditioning system
- Industrial circulation system
- Domestic central heating system and domestic hot water system.

	111111				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Name	Operating mode	Head	Flow	Motor power	Inlet/outlet			Dimensions					
Name	(x1)	(m)	(l/min)	(W)	diameter (inch)	spacing (mm)	L1	L2	B1	B2	H1	H2	G
MAGI 25-40/180	8	4	50	5-22	1½ x 1	180	90	180	52	99	128	156	11/2″
MAGI 25-60/130	8	6	55	5-45	1½ x 1	130	65	130	52	99	128	156	11/2″
MAGI 25-60/180	0	0	22	5-45	172 X I	180	90	180	52	99	128	156	11/2
MAGI 25-80/180	8	8	90	5-70	1½ x 1	180	90	180	52	99	128	156	11/2″
MAGI 32-80/180	8	8	90	5-70	2 x 1½	180	90	180	52	99	128	156	2″

	TECHNICAL DATA					
Supply voltage	1×230V +6%	o/-10%, 50Hz				
Motor protection	No additional m is req	•				
Ingress Protection	IP	42				
Insulation class	H	4				
Maximum ambient relative humidity	≤ 9	95%				
Maximum central heating system pressure	1 Мра					
Maximum suction-side	Medium temperature					
inflow pressure depending	≤ 85 °C	0.005 MPa				
on the heating medium	≤ 90 °C	0.028 MPa				
temperature	≤ 110 °C	0.100 MPa				
Compliance with the EMC standard	EN61000-6-1;	EN61000-6-3				
Operating pump sound pressure	43 d	B (A)				
Permissible ambient tem- perature	0~+	40°C				
Maximum heating medium temp.	7 TF110					
Maximum pump surface temperature	≤ 125°C					
Pumped liquid temperature range	2~+1	110°C				

CIRCULATION PUMPS

MAGI MAX

Energy-saving electronic circulation pumps with A energy-efficiency rating.

Energy Efficiency Index for MAGI pumps is:

EEI<=0,23

The MAGI circulating pump is equipped with a permanent magnet motor and a pressure differences regulator for automatic and continuous pump capacity adjustment to the actual requirements of the system. The pump control panel is located on top of the motor for easier operation by the user. Current power consumption is displayed on its panel.

The pump is supplied with union joints and cable adapter.

- The pump provides 9 operating modes:
- ECO (factory setting)
 - From highest to lowest proportional pressure characteristic curve
- PP2/PP3/PP4/PP5 Proportional pressure curves
- CP2/CP3/CP4/CP5 Constant pressure curves.

APPLICATION:

Magi circulation pump is intended for the following systems:

- Constant temperature variable flow heating system
- Variable pipe temperature heating system
- Heating system with night mode
- Air conditioning system
- · Industrial circulation system
- Domestic central heating system and domestic hot water system.

TECHNICAL DATA Supply voltage 1×230V +6%/-10% 50Hz No additional motor protection Motor protection is required Ingress Protection IP 44 F Insulation class Maximum ambient relative humidity ≤ 95% Maximum central heating system pressure 1 Mpa Medium temperature Maximum suction-side ≤ 85 °C 0.005 MPa flow pressure depending on the heating medium ≤ 90 °C 0.028 MPa temperature ≤ 95 °C 0.100 MPa Compliance with the EMC standard EN61000-6-1; EN61000-6-3 Operating pump sound 43 dB (A) pressure Permissible ambient tem-0~+40°C perature Maximum heating medium TF110 temp. Maximum pump surface ≤ 110°C temperature d liquid temperatur 2~+95°C range YES utomatic venting function

MODEL	Operating mode (x1)	Head (m)	Flow (l/min)	Motor power (W)	Inlet/outlet diameter (inch)	Inlet/outlet spacing (mm)	Weight (kg)		
MAGI 25-100/180	9	10	170	10-180	11⁄2 x 1	180	4,5		
MAGI 32-100/180	9	10	180	10-180	2 x 1½	180	4,6		

MAGI-H

Energy-saving electronic circulation pumps with A energy-efficiency rating.

000

EEI<=0,23

The MAGI circulating pump is equipped with a permanent magnet motor and a pressure differences regulator for automatic and continuous pump capacity adjustment to the actual requirements of the system. The pump control panel is located on top of the motor for easier operation by the user. Current power consumption is displayed on its panel. The pump is supplied with union joints and cable adapter

The pump provides 12 operating modes:

AUTO (factory setting)

- From highest to lowest proportional
pressure characteristic curve
 Constant rotational speed curves

- PP1/PP2/PP3/PP4 Proportional pressure curves
- CP1/CP2/CP3/CP4 Constant pressure curves.

APPLICATION:

•1/11/11

MAGI-H circulation pump is intended for the following systems:

- Constant temperature variable flow heating system
- Variable pipe temperature heating system
- Heating system with night mode
- · Air conditioning system
- Industrial circulation system
- Domestic central heating system and domestic hot water system.

PARAMETERS

1BO €\$\$\$ ↓↓↓↓ ↓ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TECHNICAL DATA
upply voltage	1×230V +6%/-10%, 50Hz
otor protection	No additional motor protection is required
ress Protection	IP 42
sulation class	Н
um ambient relative humidity	≤ 95%
um central heating	1 Mpa

W

5

Maximum ambient relative humidity	≤ 95%				
Maximum central heating system pressure	1 Мра				
Maximum suction-side	Medium temperature Min. inflow pressure				
inflow pressure depending	≤ 75 °C	0.005 MPa			
on the heating medium	≤ 90 °C	0.028 MPa			
temperature	≤ 110 °C	0.100 MPa			
Compliance with the EMC standard	EN61000-4-4				
Operating pump sound pressure	43 dB (A)				
Permissible ambient temperature	0~+40°C				
Maximum heating medium temp.	TF110				
Maximum pump surface temperature	≤ 120°C				
Pumped liquid temperature range	2~+110℃				
Automatic venting function	Y	S			

MODEL	Operating mode (x1)	Head (m)	Flow (l/min)	Motor power (W)	Inlet/outlet diameter (inch)	Inlet/outlet spacing (mm)	Weight (kg)
MAGI H 25-120/180	12	12	160	14-185	1½ x 1	180	4,9
MAGI H 32-120/180	12	12	160	14-185	2 x 1½	180	5,1

Ing

CIRCULATION PUMPS

NOVA

Energy-saving electronic circulation pumps with A energy-efficiency rating

EEI<=0,23

The NOVA circulating pump is equipped with a permanent magnet motor and a pressure differences regulator for automatic and continuous pump capacity adjustment to the actual requirements of the system. The pump control panel is located on top of the motor for easier operation by the user. Current power consumption is displayed on its panel. The pump is supplied with union joints and cable adapter.

The pump provides 8 operating modes:

- AUTO (factory setting)
 - From highest to lowest proportional pressure
 - characteristic curve
- BL1 / BL2 - Proportional pressure curves
- HD1 / HD2
- HS1/HS2/HS3
- Constant pressure curves - Constant rotational speed curves

APPLICATION:

NOVA circulation pump is intended for the following systems:

- · Constant temperature variable flow heating system
- Variable pipe temperature heating system
- Heating system with night mode
- Air conditioning system
- Industrial circulation system
- Domestic central heating system and domestic hot water system.

MARAMETERS									
MODEL	Operating mode (x1)	Head (m)	Flow (l/min)	Motor power (W)	Inlet/outlet diameter (inch)	Inlet/outlet spacing (mm)	Weight (kg)		
20-40/180	8	4	50	5-22	1½ x 1	180	3		
25-60/180	8	6	55	5-45	2 x 1½	180	3		
25-60/130	8	6	55	5-45	1½ x 1	130	2,9		

TECHNICAL DATA							
Supply voltage	1×230V +6%	/-10%, 50Hz					
Motor protection	No additional motor protection is required						
Ingress Protection	IP	44					
Insulation class	F						
Maximum ambient relative humidity	≤ 95%						
Maximum central heating system pressure	1 Mpa						
	Medium temperature Min. inflow pressur						
Maximum suction-side inflow pressure depending	≤ 85 °C	0.005 MPa					
on the heating medium	≤ 90 °C	0.028 MPa					
temperature	≤ 95 °C	0.050 MPa					
Compliance with the EMC standard	EN61000-6-1;	EN61000-6-3					
Operating pump sound pressure	43 di	B (A)					
Permissible ambient tem- perature	0~+-	40°C					
Maximum heating medium temp.	TF 95						
Maximum pump surface temperature	≤ 110°C						
Pumped liquid temperature range	2~+	95°C					

POMPY OBIEGOWE

BETA 2

Energy-saving electronic circulation pumps with A energy-efficiency rating

Energy Efficiency Index for BETA 2 pumps is

EEI<=0,23

The pumps are designed for forcing circulation in central heating systems and solar systems. The pumps are equipped with an electronic processor for automatic pump control, which together with a frequency converter allows for significant energy savings. The processor provides 11 operating modes depending on the system requirements. The power consumption is from 1/10 to 1/3 of conventional pumps. The pump is supplied with union joints and power cable.

APPLICATION:

- BETA 2 circulation pump is intended for the following systems:
 - Constant temperature variable flow heating system
 - Variable pipe temperature heating system
 - Heating system with night mode
 - · Air conditioning system
 - Industrial circulation system
 - Domestic central heating system and domestic hot water system.

	TECHNICAL DATA				
Supply voltage	1×230V +6%	/-10%, 50Hz			
Motor protection	No additional motor protection is required				
Ingress Protection	IP 42				
Insulation class	н				
Maximum ambient relative humidity	≤ 95%				
Maximum central heating system pressure	1 Mpa				
	Medium temperature Min. inflow pressure				
Maximum suction-side inflow pressure depending	≤ 85 °C	0.005 MPa			
on the heating medium	≤ 90 °C	0.028 MPa			
temperature	≤ 110 °C	0.100 MPa			
Compliance with the EMC standard	EN61000-6-1;	EN61000-6-3			
Operating pump sound pressure	43 di	B (A)			
Permissible ambient tem- perature	0~+40°C				
Maximum heating medium temp.	TF 110				
Maximum pump surface temperature	≤ 125°C				
Pumped liquid temperature range	2~+1	10°C			

6 EAC

220-240V/50Hz

TF110°C

MODEL	Operating mode (x1)	Head (m)	Flow (I/min)	Motor power (W)	Inlet/outlet diameter (inch)	Inlet/outlet spacing (mm)	Weight (kg)	
BETA 25-40/180	11	4,5	48	22	1½ x 1	180	3,1	
BETA 25-60/130	11	6	55	45	1½ x 1	130	3,1	
BETA 25-60/180	11	6	55	45	1½ x 1	180	3,0	

CIRCULATION PUMPS 🧿

OHI PRO series are seal-less circulation pumps with increased durability.

The pumps have a higher density ceramic shaft and plain bearings. Motor durability and better electrical parameters are achieved by using stronger Class F insulation winding. All processes during the manufacture of OHI PRO pumps are carried out by robots. The robots also check the quality of the intermediate products after each stage of production. At the end, the pumps are electrically and hydraulically tested. Due to the automation of the manufacturing process, the final product is of the top quality that is reproducible in every unit. All these actions have allowed us to extend the warranty period to 3 years. The pumps are supplied with union joints and a cable with a plug.

By default, the pumps have 3 speed levels for adjusting operating parameters depending on the user's and system's requirements. Due to the design and high quality materials used, the pumps are very quiet during operation.

The idea behind the creation of the OHI PRO pump was based on the belief that it is necessary to build a device with a more durable and reliable design compared to generally available circulation pumps, as well as a change in the price underselling trends.

All OHI pumps have PZH (National Institute of Hygiene) approval.

Name	Speed level	Head (m)	Flow (l/min)	Motor power (W)	Pump inlet/outlet diameter/Union joint diameter (inch)	Inlet/outlet spacing (mm)
	1	3	22	46	1 x ¾	
OHI PRO 15-60/130	2	5	38	63		130
	3	6	55	93		
	1	3	18	38	1½ x 1	180
OHI PRO 25-40/180	2	4	36	53		
	3	4,5	48	71		
	1	3	22	46		130 180
OHI PRO 25-60/130 OHI PRO 25-60/180	2	5	38	63	1½ x 1	
	3	6	55	93		
OHI PRO 32-60/180	1	3	22	46	2 x 1¼	
	2	5	38	63		180
	3	6	55	93		

OHI PRO MAX series are seal-less circulating pumps with increased durability. The MAX pumps have higher operating parameters than the OHI PRO pumps.

The pumps have a higher density ceramic shaft and plain bearings. Motor durability and better electrical parameters are achieved by using stronger Class F insulation winding. All processes during the manufacture of OHI PRO pumps are carried out by robots. The robots also check the quality of the intermediate products after each stage of production. At the end, the pumps are electrically and hydraulically tested. Due to the automation of the manufacturing process, the final product is of the top quality that is reproducible in every unit. All these actions have allowed us to extend the warranty period to 3 years.

By default, the pumps have 3 speed levels for adjusting operating parameters depending on the user's and system's requirements. Due to the design and high quality materials used, the pumps are very quiet during operation.

The idea behind the creation of the OHI PRO pump was based on the belief that it is necessary to build a device with a more durable and reliable design compared to generally available circulation pumps, as well as a change in the price underselling trends.

All OHI pumps have PZH (National Institute of Hygiene) approval.

Name	Speed level	Head (m)	Flow (l/min)	Motor power (W)	Pump inlet/outlet diameter/Union joint diameter (inch)	Inlet/outlet spacing (mm)	
	1	6,5	43	150			
OHI PRO 25-80/180	2	7,5	103	220	1½ x 1	1½ x 1	130
	3	8	160	270			
	1	6,5	43	150			
OHI PRO 32-80/180	2	7,5	103	220	2 x 1¼	180	
	3	8	160	270			

CIRCULATION PUMPS

BETA

Energy Efficiency Index for BETA pumps is

EEI<=0,23

The pumps are equipped with an electronic processor for automatic pump control, which together with a frequency converter allows for significant energy savings (maximum power consumption amounts to 1/3 of conventional pumps).

Features and advantages:

- High quality design
- Energy saving
- Low-noise operation
- Energy consumption display
- Intuitive control
- Ease of Installation
- Set of union joints and cable with plug

APPLICATION:

The BETA pumps are designed for forcing circulation in central heating systems and solar systems.

In addition to BETA 25-40/180, 25-60/180 and 25-60/130 pumps currently available on the market, two new types with higher head and flow parameters have been introduced: BETA 25-80/180 and 32-80/180.

Electronic control allows the user to choose one of 11 operating modes					
Auto	optimal mode adjusting pump parameters to the system requirements				
CN	3 modes of constant rotational speed (manual mode), in this mode, the pump operates like a conventional pump				
СР	3 modes of constant pressure, in this mode, the pump maintains a constant pressure irrespective of the flow				
PP	3 modes of proportional pressure, used when the flow is too low or too high				
Night	night mode for lower energy consumption by reducing the pump operating parameters. This mode operates along with the Auto mode. If the water temperature sensor detects a 0.1oC/min. temperature drop within approx. 2 hours, the pump will automatically switch to night mode. If the heating medium temperature increases by approx. 10oC, the pump will automatically return to normal operating mode.				
In addition, the pumps are equipped with an electronic display showing the pump's current energy consumption.					

MODEL	Operating mode (x1)	Head (m)	Flow (l/min)	Motor power (W)	Inlet/outlen diameter G (cale)	Inlet/outlet spacing L1 (mm)	Weight (kg)	L2	H1	H2	B1
BETA 25-80/180	8	8	70	60	1½ x 1	180	3,3	90	138	27	116
BETA 32-80/180	8	8	70	60	2 x 1½	180	3,4	90	138	27	116

The pumps have 3-speed motors for adjusting operating parameters depending on the user's requirements. The pumps are available with bodies made of bronze or cast iron. Due to the design and high quality materials used, the pumps are very quiet during operation. All OHI pumps have PZH (National Institute of Hygiene) approval.

PARAMETERS '						
Name	Speed level	Head (m)	Flow (l/min)	Motor power (W)	Pump inlet/outlet diameter/ Union joint diameter (inch)	Inlet/outlet spacing (mm)
	1	3	22	46		
OHI 15-60/130	2	5	38	63	1 x ¾	130
	3	6	55	93		
	1	3	18	38		
OHI 25-40/130	2	4	36	53	1½ x 1	130
	3	4,5	48	71		
	1	3	18	38		
OHI 25-40/180	2	4	36	53	1½ x 1	180
	3	4,5	48	71		
	1	3	22	46		130 180
OHI 25-60/130 OHI 25-60/180	2	5	38	63	1½ x 1	
0111 25 00, 100	3	6	55	93		100
	1	6,5	43	150		
OHI 25-80/180	2	7,5	103	220	1½ x 1	130
	3	8	160	270		
	1	3	22	46		
OHI 32-60/180	2	5	38	63	2 x 1¼	180
	3	6	55	93		
	1	6,5	43	150		
OHI 32-80/180	2	7,5	103	220	2 x 1¼	180
	3	8	160	270		

1///// DADAMETERS

CIRCULATION PUMPS 🧿 📴

The pumps are made of high quality materials. The pumps are complete with connecting flanges. 550W and 750W seal-less pumps for larger systems. All OHI pumps have PZH (National Institute of Hygiene) approval.

6)

OHI 50-170/250

208m

MODEL	Operating mode (x1)	Head (m)	Flow (l/min)	Motor power (W)	Flange diameter (cale)	Flange spacing (mm)	Weight (kg)
OHI 40-80/200	1/2/3	6,5/7,5/8	43/103/160	150/220/270	11⁄2	200	6
OHI 50-140/220	1	12	210	550	2	220	16
OHI 50-170/250	1	16	320	750	2	250	17

STEROWNIK S-100

CONTROLLER FOR CENTRAL HEATING PUMP

The S-100 controller is designed for the central heating circulation pump control.

The controller starts the pump if the temperature exceeds the set value.

This prevents unnecessary pump operation resulting in energy saving (savings up to 60% depend on the boiler load), and extending the pump's life-span. This increases the pump's reliability and reduces operating costs.

The pump activation temperature is adjusted by a potentiometer in the range of 20°C to 80°C. The pump starts if the actual temperature drops by 2°C below the set temperature (adjustable by the potentiometer).

In addition to the potentiometer, the S-100 controller has two switches. The first switch is used to activate the controller (green LED lights up), while the second one (red) is used to manually activate the pump.

Kolejne dwie diody świecące sygnalizują:					
Yellow	operation				
Red	sstand-by (stop)				
Temperature setting range (set temp.)	20°C - 80°C				
Hysteresis	2°C				
Voltage	230V/50Hz ± 10%				
Power consumption	< 1W				
Operating temperature	20°C - 70°C				
Temperature sensor	resistance				
Wire cross-section	3 x 0,75mm²				
Sensor cable length	3m				
Power cable length	1,5 - 2m				
Pump power cable length	2m				
Pump supply voltage	230V/50Hz				
Max. output operational current	1A (relay output)				
Dimensions (W x H x500000 L)	59mm x 40mm x 85mm				

50

0

STOP

S-100

0

PRACA RĘCZNA

0

0

PRACA POMPY

ZASILANIE

E

°C

CENTRAL HEATING CONTROLLERS

S-130 CONTROLLER

The S-130 controller is designed for the central heating circulation pump control.

The controller starts the pump if the temperature exceeds the set value. This prevents unnecessary pump operation resulting in energy saving (savings up to 60% depend on the boiler load), and extending the pump's life-span. This increases the pump's reliability and reduces operating costs. The pump activation temperature is adjusted with the "+" and "-" buttons after short pressing the "MENU" button within the setting range from -50°C to 110°C. Hysteresis is adjustable from 0.1°C to 30°C.

Inverted hysteresis function - soft stop. An example: Temperature set to 35° C (bottom display) Hysteresis 2° C

Central heating pump will be activated at 35°C + 2°C = 37°C and stopped at 35°C. The controller is equipped with 2 LED displays (3 digits each).

The current temperature measured by the sensor is displayed on the top display, white the set temperature is shown on the bottom display. Pressing the MENU button activates the controller's preview mode and the set temperature settings. Pressing the "MENU" button once will display the temperature setting function (the bottom display will flash).

The temperature is changed by pressing the "+" and "-" buttons. Longer pressing and holding the MENU button (for approx. 3s) will display P0 menu level. Now, the "+" and "-" buttons can be used to move to the next menu levels (P0-P3) to change the settings of various controller functions. When required menu level (P0-P3) is open, press the "+" and "-" buttons together, the bottom display will start flashing. Now, the "+" and "-" buttons can be used to change setting of a given function. After changes, the controller automatically saves the function parameters. The regulator is protected with a WT 1A fine fuse.

Technical Data					
Temperature setting range (set temp.)	-50°C -110°C				
Hysteresis	0,1°C - 30°C				
Supply voltage	230V/50Hz±10%				
Power consumption	< 2W				
Operating temperature	- 20°C - 60°C				
Temperature sensor	RESISTANMCE				
Sensor cable length	~ 1m				
Power cable length	1,4 – 2m				
Pump power cable length	1,50 m				
Exit	230V/50Hz				
Max. output operational current	pump 1A (resistance load)				
Dimensions (W x H x L)	74 x 40 x 145				

Energy-saving electronic circulation pumps with A energy-efficiency rating.

Energy Efficiency Index for NOVA-OG pumps is

EEI<=0,23

The pumps are equipped with an electronic processor for automatic pump control, which together with a frequency converter allows for significant energy savings (maximum power consumption is 1/3 of conventional pumps).

Features and advantages:

- High quality design
- Energy saving
- Low-noise operation
- Energy consumption display
- PWM signal support

APPLICATION:

The NOVA-PB pumps are designed to increase water pressure in gas boilers and other heating and cooling systems.

Ele	ctronic control allows the user to choose one of 11 operating modes					
ECO	optimal mode adjusting pump parameters to the system requirements					
1/11/111	3 modes of constant rotational speed (manual mode), in this mode, the pump operates like a conventional pump					
CP1/CP2	3 modes of constant pressure, in this mode, the pump maintains a constant pressure irrespective of the flow					
PP1/PP2	3 modes of proportional pressure, used when the flow is too low or too high					
Night	night mode for lower energy consumption by reducing the pump operating parameters. This mode operates along with the Auto mode. If the water temperature sensor detects a 0.10C/min. temperature drop within approx. 2 hours, the pump will automatically switch to night mode. If the heating medium temperature increases by approx. 10oC, the pump will automatically return to normal operating mode.					
Doda	Dodatkowo pompy zostały wyposażone w elektroniczny wyświetlacz prezentujący aktualne zużycie prądu przez pompę.					

TECHNICAL DATA					
Supply voltage	1×230V +6%	/-10%, 50Hz			
Motor protection	No additional m is req				
Ingress Protection	IP 44				
Insulation class	F				
Maximum ambient relative humidity	≤ 95%				
Maximum central heating system pressure	3 bar				
	Medium temperature				
Maximum suction-side inflow pressure depending	≤ 75 °C	0.005 MPa			
on the heating medium temperature	≤ 80 °C	0.028 MPa			
	≤ 85 °C	0.050 MPa			
Compliance with the EMC standard	EN61000-6-1;	EN61000-6-3			
Operating pump sound pressure	43 di	B (A)			
Permissible ambient tem- perature	0~+-	40°C			
Maximum heating medium temp.	TF 85				
Maximum pump surface temperature	≤ 9	0°C			
Pumped liquid temperature range	2~+	85°C			

MODEL	Operating mode (x1)	Head (m)	Flow (I/min)	Motor power (W)	Weight (kg)
NOVA-PG 15/5	8	5	29	5-32	2
NOVA-PG 15/6	8	6	32	5-45	2
NOVA-PG 15/7	8	6,5	33	5-47	2

CIRCULATION PUMPS FOR GAS BOILERS 5

Surface pump designed for increasing pressure in hydraulic systems. The pump can be used as a circulator for some industrial equipment, such as machines, laser devices, injection moulding machines, food processing machinery, and can also supply water to small boilers. The pump is designed to operate with cold and hot water. The set includes an automatic switch for pump operation control. The pump inlet/outlet and impeller are made of brass. An important advantage of the pump is its low-noise operation and compact size, therefore it can be installed in residential premises.

APPLICATION:

- · Increasing pressure in systems with water heaters.
- Increasing pressure in water supply systems. •
- By using the pump, regardless of the pressure and its changes in the water supply system, it is possible to increase the
- pressure and keep it constant. Increasing pressure in multi-storey water systems. •
- · Aeration and water circulation in fish keeping.

MARAMETERS							
MODEL	Max wydajność (l/min)	Max. head (m)	Power (W)	Voltage (V)	Amperage (A)	Inlet/outlet (inch)	Max. temperature (C°)
W15IH-10	20	10	90	230	0,45	3⁄4 - 1⁄2	110
W15IH-10 economy	20	10	90	230	0,45	3⁄4 - 1⁄2	110

CIRCULATION PUMPS 🧿 🖪

CIRCULATION PUMPS

Circulation pumps with brass body

BETA 25-60/130 BR

Circulation pumps with brass body

Energy-saving electronic circulation pumps with A energy-efficiency rating with brass body.

The pumps are equipped with an electronic processor for automatic pump control, which together with a frequency converter allows for significant energy savings. Energy Efficiency Index for BETA pumps is EEI<=0.23. The pumps are equipped with an electronic display showing current energy consumption.

OHI 15-60/130 BR

OHI 25-60/130 BR

Circulation pumps for hot water systems

Seal-less 3-speed circulation pumps designed for forcing domestic hot water circulation in larger systems. The pump is usually installed upstream the boiler or hot water tank.

The pumps have PZH (National Institute of Hygiene) approval.

Name	Speed level / Mode (x1)	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Inlet/outlet diameter (inch)	Inlet/outlet spacing (mm)
BETA 25-60/130 BR	11	6	55	45	230	1½ x 1	130
OHI 15-60/130 BR	1/2/3	3/5/6	22/38/55	46/63/93	230	1 x ¾	130
OHI 25-60/130 BR	1/2/3	3/5/6	22/38/55	46/63/93	230	1½ x 1	130

GIRCULATION PUMPS

Seal-less circulation pumps designed for forcing hot water circulation. In systems without hot water pumps, after opening the tap, before the hot water starts flowing, cool water remaining in the pipeline will flow first. If a hot water pump is installed, hot water will flow almost immediately after opening the tap. The pump is usually installed upstream the boiler or hot water tank. With years of experience, we have been able to improve previous designs and create the top quality pump.

Using the latest technology, the efficiency and, consequently, the energy consumption have been improved compared to older designs.

Brass body and ceramic shaft guarantee the pump is almost faultless.

The pumps have PZH (National Institute of Hygiene) approval.

ADVANTAGES:

- Robust design
- Low-noise operation
- Hassle-free control
- Easy installation
- Complete with cable and plug.

TECHNICAL DATA					
TYP:	CPI 15-15				
Motor power	28 W				
Voltage	230V~ / 50Hz				
Obroty silnika	2600 obr/min				
Amperage	0,3 A				
Ingress Protection	IP42				
Maksymalne ciśnienie robocze	10 bar (1 000 000 Pa)				
Flow (I/min)	7,5				
Head(m)	1,7				
Temperatura cieczy	2 - 95°C				
Minimalne ciśnienie na ssaniu	0,4 bar(40 000Pa) dla 95°C 0,2bar(20 000 Pa) dla 65°C				
Długość montażowa	85 mm				
Króćce ssący/tłoczny (dla śrubunków)	1⁄2″				

PARAMETERS Inlet/outlet Motor pow (W) Speed level (x1) Head (m) Flow (l/min) Voltage (V) utlet dia nlet/o Name spacing (mm) (inch) CPI 15-15 1 1,7 7,5 28 230 1⁄2 85

CIRCULATION PUMPS

E-IBO 15-14

Compared to traditional circulation pumps, the energy consumption of the E-IBO pumps can be as low as 3W depending on the system.

Energy-saving electronic hot water circulation pumps with A energy-efficiency rating.

TECHNICAL DATA

The E-IBO 15-14 pumps are designed for continuous operation forcing the hot water circulation, and in small heating systems. The pumps can be used in ventilation and air-conditioning systems. By using circulation pumps, water consumption is significantly reduced.

Compared to traditional circulation pumps, using the permanent magnet motor allows to reduce the energy consumption of the E-IBO pumps to as low as 3W depending on the system. The pumps are equipped with a spherical impeller operating in various planes.

FEATURES:

- Pump parameters can be automatically or manually adjusted to the system requirements.
- A spherical Noryl impeller moves in various planes.
- Wear-resistant ceramic shaft . •
- Stainless steel pump body. •
- . Power cable with a plug.

ADVANTAGES:

- · Easy installation and start up
- Low power consumption
- · High energy efficiency has been achieved by using the permanent magnet motor.
- Maximum usability
- Robust design
- Low-noise level of the pump and the entire system. .

ZASILANIE ELEKTRYCZNE	1×230V +6% / -10%, 50Hz PE	
ZUŻYCIE ENERGII	3 - 9 W	
ZABEZPIECZENIE SILNIKA	Nie ma potrzeby dodatkowego zabezpieczenia silnika	
INGRESS PROTECTION	IP 44	
KLASA IZOLACJI	H H tabe	tłumaczenia w lce
MAKSYMALNA WILGOTNOŚĆ WZGLĘDNA OTOCZENIA	≤ 95%	
MAKSYMALNE CIŚNIENIE W UKŁADZIE CO	1 MPa	
MINIMALNE CIŚNIENIE NAPŁYWU NA SSANIU	2 m H ₂ O	
CIŚNIENIE AKUSTYCZNE PRACUJĄCEJ POMPY	43 dB (A)	
DOPUSZCZALNA TEMPERATURA OTOCZENIA	0 ~ + 40°C	
MAKSYMALNA TEMP. CZYNNIKA GRZEWCZEGO	TF95	
ZAKRES TEMPERATUR POMPOWANEJ CIECZY	2 ~ + 95⁰C	
KRÓĆCE	V ₂ "	
ROZSTAW KRÓĆCÓW	85 mm	

MARAMETERS							
Name	Speed level (x1)	Head (m)	Flow (l/min)	Motor power (W)	Voltage (V)	Inlet/outlet diameter (inch)	Inlet/outlet spacing (mm)
E-IBO 15-14	AUTO	1,2	12	9	230	1⁄2	85

IPML INDUSTRIAL CIRCULATION PUMPS FOR CIRCULATING COLD AND HOT WATER.

Pumps designed for constant or variable flow water supply systems with the medium temperature not exceeding 100°C (80°C) and the pressure not exceeding 0.6 MPa. Pumps are most often used in heating and cooling systems. The smallest of the series, the IPML 25/125 pump can also be used to fill solar systems. The IPML 50/1100 and 50/2200 water circulation pumps are intended for water containing non-abrasive and nonabsorbent solid impurities of 0.27 kg/m3.

Operating conditions:

- Maximum liquid temperature 80 /100°C
- . Maximum ambient temperature 40°C
- Class B/F Insulation
- Operating mode continuous •
- Protection IP44
- .
- Protection for 230V motors
- . Rotational speed of the electric motor: 2850RMP

Materials:

- Pump body: cast iron
- Bearing retainer: cast iron
- Motor housing: aluminium
- Shaft and rotor: stainless steel AISI 304
- Impeller: brass (to IPML 50/1100) •
- Impeller: cast iron (from IPML 50/1500)) .
- . Mechanical seal: ceramics/graphite/NBR

M PARAMETE	RS ///////							
Name	Motor power (W)	Head (m)	Flow (I/min)	Voltage (V)	Inlet/outlet (inch)	Inlet/outlet spacing (mm)	Curve no.	Max temp madium (°C)
IPML 25/125	125	30	30	230	1⁄2	-	А	100
IPML 25/750	750	28	140	230	1	280	В	100
IPML 50/750	750	14	340	230	2	280	С	100
IPML 50/1100	1100	20	300	230	2	280	D	100
IPML 50/1500	1500	22	380	400	2	312	E	80
IPML 50/2200	2200	30	400	400	2	312	F	80
IPML 50/5500	5500	55	380	400	2	343	I	80
IPML 65/3000	3000	22	660	400	21⁄2	343	G	80
IPML 65/4000	4000	34	900	400	21⁄2	343	н	80
IPML 80/5500	5500	25	1200	400	3	343	J	80

CIRCULATION PUMPS 🧿 🖪

IPML

Name	Curve no.	н	H1	L	Weight (kg)
IPML 25/125	A	255	160	219	7,8
IPML 25/750	В	282	141	372	16,1
IPML 50/750	С	280	140	372	20,1
IPML 50/1100	D	280	140	372	29,4
IPML 50/1500	E	312	156	397	34,6
IPML 50/2200	F	312	156	397	36,8
IPML 50/5500	G	360	180	610	58
IPML 63/3000	Н	343	171,5	565	66
IPML 65/4000	I	356	178	615	70,5
IPML 80/5500	J	400	200	640	76

SPECIAL PUMPS SPEZIALPUMPEN SPECIÁLNÍ ČERPADLA POMPY SPECIALE СПЕЦИАЛЬНЫЕ НАСОСЫ

The PR-50 hand pump is a piston pump designed for pressure testing of system tightness and for filling solar system. The main advantage of the pump is that it can be used without access to electric power.

Due to its open design, the pump can also be used as a 12 L vessel. The proven and durable design make the pump very popular among installers.

OPERATING INSTRUCTIONS:

Connect the end of the pressure hose to the tested system, then filled the pump tank with clean, preferably filtered water. Next, fill the system with water. The test pump is only used to fill the final amount of liquid required to achieve the desired pressure. Open V1 valve and close V2 valve.

After connecting the pump, filling the pump and the tested system with water, opening the V1 valve and closing the V2 valve, pump the water with a lever while checking the pressure gauge reading. Once the required pressure has been achieved, close the V1 valve. If, by mistake, the test pressure is slightly exceeded after closing the V1 valve, slightly open the V2 valve.

The pressure will then start to drop.

APPLICATION:

- Tightness testing of pipe systems (water supply systems, central heating, compressed air, and oil systems).
- Tightness testing in the production of boilers and pressure vessels.
- Filling solar systems.
- Injecting antifreeze agents into existing central heating systems.

ADVANTAGES:

- 1.3m steel braided discharge hose reduction of
- flow losses and limiting measurement errors.Durable piston lever resistant to torsion, can be
- used as a pump carrying handle.
- The double cut-off valve system in the
- monobloc body guarantees a constant pressure and eliminates the leaks at union joints.

MARAMETERS

Name	Objętość robocza/ruch tłoka (ml/skok)	Tank capacity litre (l)	Max. pressure MPa/bar/kg) (cm2)	Inlet/outlet (inch)	Dimensions L/H/W (cm)	Weight (kg)
PR – 50	45	12	5/50/50	1	49/16,5/16,5	7,8

TEST PUMPS

Electric pump designed for pressure testing of system tightness and for filling solar system. The pump's electric motor makes its use exceptionally easy and comfortable. The pump comes with a liquid container, suction hose, high pressure hose, overflow hose and suction filter. Unlike the PR AUTO hand pump, it can also be used to fill the systems with water.

OPERATING INSTRUCTIONS:

Connect the suction to the filter and then connect it the pump along with the overflow and high pressure hose.

Loosen the pressure adjustment screw to prevent the sudden pressure increase after starting the pump.

When the suction hose with the connected filter and the overflow hose are placed in a container with water, close the valve to which the high pressure hose (black) is connected.

After setting the desired pressure with the pressure adjusting screw, you can start filling the system.

APPLICATION:

- Tightness testing of pipe systems (water supply systems, central heating, compressed air, and oil systems).
- Tightness testing in the production of boilers and pressure vessels.
- Filling solar systems.
- Injecting antifreeze agents into existing central heating systems.

ADVANTAGES:

- Can be used to fill the system
- Automatic operation pump equipped with an electric motor
- The pump packaging can also be used as a water tank
- All hoses and filter included
- Easy-to-use

		PARA	MET	TERS	
--	--	------	-----	------	--

Name	Voltage (V)	Flow (I/h)	Max. pressure MPa/bar/kg (cm²)	Motor power (W)	Dimensions L/H/W (cm)	Weight (kg)
PR – AUTO	230	174	6/60/60	250	39/29/29	14

OIL PUMPS 🧿 📴

IMAGE: AOP60 Set

AOP - PUMPS / OIL SETS

IMAGE: AOP60

IMAGE: AOP60 E Set

AOPs are displacement vane pumps designed for pumping diesel fuel, heating oil and bio-diesel fuel. The pumps are equipped with thermal protection mounted in the motor winding.

IMAGE: AOP55

AOP 60 and AOP 55 pumps are powered by 230 V/50 Hz single-phase AC. AOP40 - 12 V and AOP70 - 12/24 V pumps are power by 12 V or 24 V DC batteries. The pumps are equipped with a by-pass excess flow valve.

APPLICATION:

The pumps are used in industrial, agriculture and domestic applications. AOP 60 pumps are also available in professional pump sets with complete fittings.

The set includes:

- AOP pump
- Frame for transporting and stable installation of the set.
- Oil filter to prevent solid particles such as sand, filings etc. from getting into a pump.
- Gun (filler nozzle) with automatic flow cut-off and swivel connector. . The gun returns when a tank is fully filled.
- Mechanical flow meter (AOP 60, AOP 80 set, accuracy \pm 1%) with a three-digit erasable dial and non-erasable total meter.
- + Electronic flow meter (AOP 60E set, accuracy \pm 0.5%) with a seven-digit erasable display and non-erasable total meter.
- 4 m delivery-side oil-resistant rubber hose.
- 2 m suction-side oil-resistant rubber hose with non-return valve and a suction strainer.

APPLICATION:

Transport companies, agriculture farms, industrial plants. Its handy housing ensures comfortable handling between the barrels, tanks or stationary installation.

MARAMETERS

Name	Head (m)	Flow (I/min)	Motor power (W)	Voltage (V)	Inlet/outlet (inch)
AOP 40 - 12 V	10	40	160	12	3⁄4"
AOP 70 - 12 V	20	55	550	12/24	3⁄4"
AOP 55 / AOP 55 set	15	55	155	230	3⁄4"
AOP 60 / AOP 60 set	30	60	370	230	1"
AOP 60 E set	30	60	370	230	1"

VALUATED INTERNAL COMBUSTION PUMPS

Pumps mounted on a metal support frame. Used for draining and irrigation. The pumps are designed for pumping clean and dirty water with solids of a maximum size permissible in accordance with technical parameters. The pumps are an excellent solution for civil engineering, fire services and agriculture farms. The pumps with internal combustion engines are fully independent of the electricity network, therefore they are very popular among the customers. The set includes a metal frame holding the entire internal combustion system, i.e. a petrol engine, fuel tank and pump with inlets and outlets.

General purpose SAE 10W-30 oil should be used with the BZP pump motor;

Two types of hoses are required for the pump:

- The suction hose must be leak-proof along its entire length and should have a rigid braid to prevent it from sucking in / jamming during operation. The hose diameter must match the pump inlet diameter, the hose diameter must not be smaller. Mount a suction strainer with a non-return valve at the end of the suction hose.
- The discharge hose diameter should match the outlet diameter. Woven (fire) hoses can be used as discharge hoses.

Name	Engine type (strokes)	Engine rotatic speed (rpm		Fuel/oil tank capacity (L)				Power (HP)		Weight (kg)
BZP-10	2	6500		1,2	2	Р	B95		2	9
BZP-20	4	3600)0 3,6		0,6	Р	B95		6,5	23
BZP-30	4	3600	3,6 /		0,6	Р	B95		6,5	26
H-BZP-20	4	3600		3,6 / 0		Р	PB95		6,5	28
H-BZP-30	4	3600		6,5 / 0		PB95		13		53
Name	Max. flow [l/min]	Max. head [m]		ix. suction epth [m]	temperat	rmalna ure cieczy C)	Maximu pressur		Inlet/outlet	Dimensions
BZP-10	200	33		7	3	5	3		1 x 1	340x250x340
BZP-20	600	30		7	3	5	3		2 x 2	510x390x465
BZP-30	1000	30		7	3	5	3		3 x 3	510x390x465
H-BZP-20	600	70		7	3	5	7		2 x 2	510x390x465
H-BZP-30	700	95		7	3	5	9,5		3 x 3	530x410x470

MARAMETERS
AGRICULTURE PUMPS

Tractor pumps mounted on painted steel frames equipped with a three-point suspension system on the tractor. Depending on the tractor type, it is possible to install a frame extension.

The pumps are driven by a power take-off shaft (PTO). Required tractor PTO shaft revolutions are 540 rpm. Via the PTO shaft (shaft included), the revolutions from the PTO are transferred to a 6.6 gear ratio gearbox that drives the pump. The minimum tractor power required to drive the pump is 15 HP, the maximum 125 HP.

PRO

Single-stage, self-priming PRO tractor pumps are designed for drainage and irrigation. They can pump dirty water (including slurry). The maximum suction capacity of the pump after priming is 7 m. The pumps are ideal for fighting floods.

PRN

Single-stage centrifugal non-self-priming PRN tractor pumps (before starting, the pump and the suction hose must be primed) can be used for pumping water from ponds, lakes, rivers, impounding reservoir and wells, where the water level during pumping does not fall below 6 m from pump inlet. The pumped water must be clean, without solid impurities. The pump is designed to supply water to all types of irrigation systems that require higher pressure. It can be used in vegetable farming, horticulture, tree nurseries and other agricultural production.

The PTO shaft is supplied with the pump.

SPECYFI	KACJA
ZAPOTRZEBOWANIE MOCY Z CIĄGNIKA [KM]	15-125
WYMAGANE OBROTY WOM [OBR/MIN]	540
WAŁEK WOM	Średnica : 1-3/8″ , 6-ciowpustowy
STOPNIE REDUKCJI REDUKTORA	Pojedyńcza redukcja
PRZEŁOŻENIE REDUKTORA	1 do 6.67
REKOMENDOWANY OLEJ PRZEKŁADNIOWY	Olej przzekładniowy SAE 90
SMAR WAŁKA PRZEKAŹNIKA MOCY	Smar litowy

Brak tlumaczenia

tabelki

PAR	ΔΜ	FTF	R٢	`/////

1								
	Name	Head (m)	Flow (I/min)	Outlet (inch)	Outlet (inch)	Suction capacity (m)	PTO revolutions / pump revolutions (1/min)	Weight netto (kg)
	PRO	30	1000	3	3	7	540/3600	50
	PRN	70	750	3	3	6	540/3600	65

BI HAND PUMPS

PISTON PUMPS CLASSIC / DECORATIVE ABYSSINIAN PUMP

IMAGE: Baseplate / Classic Abyssynian Pump

Hand cast iron pumps intended for pumping clean cold water from underground intakes.

The pumps have a simple and durable design with resistance to wear and tear.

Pumping is done by means of a piston with cup leather packing mounted in the pump body. The piston is human-powered via a rod and external lever.

Abyssinian pumps are used mostly in places where electricity is not available. Pumps are available in two versions: classic - green and decorative with ornaments - black.

Both versions are available in sets with cast iron baseplates.

Application (the same for both pumps):

Supply of water from underground intakes to allotments, gardens, and in places where electricity is not available. Due to their attractive design, the pumps can be decorative features in the garden.

IMAGE: Baseplate / Decorative Abyssinian Pump

TECHNICAL DATA:

- Casting: cast iron
- Piston: cast iron with cup leather packing
- · Body: vertical orientation with pressing
- Non-return valve: yes

ADVANTAGES:

- Robust design
- Easy water suction
- Simple design
- Faultless
- Easy installation and removal
- Attractive design
- Cost-free use

MARAMET	ERS						
Name	Suction capacity (m)	Flow (I/min)	Piston diameter (mm)	Suction pipe diameter (cale)	Pump height (cm)	Base plate height (cm)	Weight (kg)
ABYSSINIAN PUMP	7	28	75	1¼	68	67	15
DECORATIVE ABYSSINIAN PUMP	7	28	75	1¼	68	67	15

FOOD GRADE PUMPS

Pumps designed for transporting concentrated or non-concentrated food liquids with up to 50% dry matter content or other food products with a temperature up to 75°C. Centrifugal pumps with open impeller, enclosed motor, and distanced hydraulic body. Inlet/outlet are complete with connections for easy installation. The device has four adjustable legs. SIC/WC (EPDM) mechanical seal. VMQ body seal/

APPLICATION:

- · dairy production sector (fresh and pasteurized milk, whey, ice mixtures),
- fruit processing (nectar juices, clarified juices, fruit and vegetable drinks, wines and fruit liquors), alcohol production (mashes, spirits),
- •
- transport of cleaning liquids in CIP systems. •

Certificate of Health Quality has been issued for the device by THE NATIONAL INSTITUTE OF PUBLIC HEALTH - NATIONAL INSTITUTE OF HYGIENE - FOOD SAFETY DEPARTMENT (PZH).

PARAMETERS				
Name	Head (m)	Flow (l/min)	Motor power (W)	Wlot/wylot (mm)
SBAW 1 - 10	10	120	370	32/25
SBAW 15 - 24	24	250	2200	50/38

Models available on request subject to arrangements with the sales department

anna. •	•	-	-	
Name	Motor power (W)	Max Head (m)	Max wydajność (m³/h)	Wlot/wylot (mm)
SBAW 3 - 16	750	18	3	38/32
SBAW 5 -24	1500	24	5	38/38
SBAW 5 - 32	2200	32	5	38/38
SBAW 10 - 36	3000	36	10	50/40
SBAW 15 - 24	2200	24	15	50/50
SBAW 20 - 24	3000	24	20	50/50
SBAW 20 - 25	4000	25	20	50/50
SBAW 30 - 25	5500	25	30	50/50
SBAW 20 - 36	5500	36	20	50/50
SBAW 40 - 24	5500	24	40	65/50
SBAW 40 - 24	5500	24	40	80/65
SBAW 30 - 36	7500	36	30	65/50
SBAW 40 - 36	7500	36	40	80/65
SBAW 80 - 30	15000	30	80	100/100
SBAW 80 - 40	18500	40	80	100/100

SANITARY PUMPS SANITÄRPUMPEN SANITÁRNÍ ČERPADLA POMPE SANITARE CAHИTAPHЫE HACOCЫ

CONDENSATE PUMPS

CONIBO

The CONIBO pump is a compact device designed for pumping condensate. The pump is fully automatic. After filling the tank, the pump automatically starts, and after draining the condensate it automatically stops. 3/8 inch diameter and 6 m long transparent discharge hose is supplied with the pump. The pump is suitable for short-time pumping of water at 50°C. The pump can operate with water with pH range from 2.5 to 10. The pump has been designed for faultless operation in professional air conditioning systems. Its most important features are low-noise operation and compact size. The pump is fully automatic and maintenance free, which guarantees comfort of use. The condensate draining cycles are automatic and depend on the condensate level in the tank. The pump is mostly used in applications where condensate flows below the level of its drainage from premises or systems.

CONAQUA

The CONAQUA pump has a similar design to CONIBO, it also operates in a fully automatic cycle.

The pump is suitable for pumping water at temperatures from 1°C to 25°C. For short time, it can pump water at 50°C, however, the operating time may not exceed 90s, and the stand-by time must be at least 600s. The pump is suitable for pumping condensate to a height of up to 5m and a maximum horizontal distance of 20 m (each elbow and valve must be counted as 1 m discharge height). During installation, horizontal sections should be sloped by 1%. CONI pumps are designed for pumping water condensate from cooling units, air conditioning units and condensing furnaces. The pump is a compact-size device. The pump is fully automatic and maintenance free, which guarantees comfort of use. After filling the tank with condensate, the pump starts automatically, and after draining the condensate it stops automatically until the next cycle. The pump is mostly used in applications where condensate flows below the level of its drainage from premises or systems.

ZASTOSOWANIE:

Pumping water condensate from cooling units, air conditioning units and condensing furnaces.

1	MARAINE I							
	Name	Head (m)			Weight (kg)	Motor power / nominal (W)	Dimensions D/H/W (cm)	Tank capacity (I)
	CONIBO	4,5	330	230	2,2	80	28/17/13,5	1,9
	CONAQUA	5,1	250	230	1,7	58	28/15/13	1,7

Sanitary pumping station for bathrooms and kitchens.

The pump is similar to the Sanibo mini pumping station. The switch makes the pump a fully automatic device intended for use in bathrooms to drain water from wash basins, shower cabins or from washing machines or sinks installed in kitchens. It is an excellent solution for bathrooms where the wash basins or shower bases are installed outside the stack and riser or below the sewage discharge level. Bathtubs, washing machines, wash basins, shower bases, sinks etc. can be connected to the pumping station.

Its compact size and low-noise makes the pump operation discreet and suitable for installation e.g. in under-sink cabinets.

The pump is supplied with:

- End plugs: 2 pcs x 40 mm,
- Stainless steel clamping rings: 3 pcs.

Application:

Domestic premises without technical means to connect sanitary facilities to gravity sanitary sewage system - basements, attics and other rooms converted for sanitary purposes.

Name	Head (m)	Flow (I/min)	Voltage (V)	Motor power (W)	Dimensions L/H/W (cm)	Weight (kg)	Max. temperature (°C)
AQUASAN MINI	4	40	230	250	30/17/16,5	4	40(90)*

SANITARY PUMPS

Sanibo mini is a sanitary pump designed for bathrooms and kitchens. The pumping station has one of the most advanced and reliable design available on the market. The pump is fully automatic and intended for use in bathrooms to drain water from wash basins, shower cabins or from washing machines or sinks installed in kitchens. The pump will automatically start when the liquid level is 55mm and stop when it falls to 25mm. It is an excellent solution for bathrooms where the wash basins or shower bases are installed outside the stack and riser or below the sewage discharge level. Bathtubs, washing machines, wash basins, shower bases, sinks, and even bidets can be connected to the pumping station. Its compact size and low-noise makes the pump operation discreet and suitable for installation e.g. in undersink cabinets. The pump has two inlets for connecting for example shower base and sink.

The pump is supplied with:

- End plugs: 40mm
- 28mm/32mm elbow non-return valve
- Stainless steel clamping rings

Application:

Domestic premises without technical means to connect sanitary facilities to gravity sanitary sewage system - basements, attics and other rooms converted for sanitary purposes.

Brak tlumaczenia piktogramów

~				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Name	Head (m)	Flow (I/min)	Voltage (V)	Motor power (W)	Dimensions L/H/W (cm)	Weight (kg)	Max. temperaturae (°C)	Liquid PH
	AQUASAN MINI	6,5	100	230	300	35/15/16	4,5	45	4-10

As a toilet pump, the Aquasan has been available on the market for many years. It is an economical version of Sanibo series. The pump has three inlets - 100 mm main inlet for toilets, two 40mm for shower bases or wash basins, and one 40mm outlet. It is an excellent solution for bathrooms where the toilet is installed outside the stack and riser or below the sewage discharge level. It has a switch for automatic pump control - the pump automatically stops after filling the device. Additionally, the pump can be started manually. Its low-noise operation makes the pump ideal for domestic applications. An additional advantage of the device is the ability to pump liquids below 90°C for up to 1 minute.

Bathtubs, toilets, washing machines etc. can be connected to the pumping station, and unused inlets can be closed with end caps. The pump is supplied with a set of stainless steel clamping rings and end caps, which makes it suitable for various applications.

The set includes:

- WC pump
 - End plugs: 2 x small (40 mm), 1 x large (100 mm).
- Clamping rings

Application:

Domestic premises without technical means to connect sanitary facilities to gravity sanitary sewage system - basements, attics and other rooms converted for sanitary purposes.

Name	Head (m)	Flow (I/min)	Tank capacity (I)	Voltage (V)	Motor power (W)	Dimensions L/H/W (cm)	Weight (kg)	Max. temp (°C)	Ingress Protection	Liquid PH
AQUASAN PRO	6,5	140	6	230	600	51x32x22	8,5	50(90)*	IP 44	4 - 10

The Sanibo 1 WC pump is a fully automatic device designed for draining sewage from toilets, wash basins and sinks. Its low-noise operation makes the pump ideal for domestic applications. Sanibo 1 has a three-blade impeller

with six cutting edges that perfectly fight impurities that enter the pump. Additionally, the pump has three inlets - 100 mm main inlet for toilets, two 40mm for shower bases or wash basins, and one 40mm outlet. It is an excellent solution for bathrooms where toilets are installed outside the stack and riser or below the sewage discharge level. It has a switch for automatic pump control - the pump automatically stops after filling the device. Additionally, the pump can be started manually.

An additional advantage of the device is the ability to pump liquids below 90°C for up to 2 minutes. Due to the 7 metre head vertically and 70 metre horizontally, there is no need for gravity sewage disposal. Its operating cycle is approx. 8 seconds.

The pump is supplied with a set of stainless steel clamping rings and end caps, which makes it suitable for various applications.

The set includes:

- WC pumps with cutting system
- End caps: x 2 (40mm), x 1 (100mm).
- Non-return valves x 2
- Clamping rings

Application:

Domestic premises without technical means to connect sanitary facilities to gravity sanitary sewage system - basements, attics and other rooms converted for sanitary purposes.

Name	Head (m)	Flow (I/min)	Tank capacity (l)	Voltage (V)	Motor power (W)	Dimensions L/H/W (cm)	Weight (kg)	Max. temp (°C)	Ingress Protection	Liquid PH
SANIBO 1	7	120	6	230	600	51x32x22	8,5	60 (90)*	IP 44	4 - 10

TOILET PUMPS

SANIBO 4 is a high quality fully automatic toilet pump for pumping sewage, equipped with three inlets for draining sewage from toilets and wash basins/sinks - one main 100 mm inlet for toilets, 40mm for shower bases or wash basins, and one 40mm outlet. It has a switch for automatic pump control - the pump automatically stops after filling the device. Additionally, the pump can be started manually. Its low-noise operation makes the pump ideal for domestic applications. Long blades used in the Sanibo 4 impeller provide increased pump flow up to 300 l/min.

and excellent performance when dealing with impurities flowing into the pump. An additional advantage of the device is the ability to pump liquids below 90°C. Due to the 9 metre head vertically and 90 metre horizontally, there is no need for gravity sewage disposal. Its operating cycle is approx. 6 seconds.

The set includes:

- WC pump
- End caps: x 2 (40mm), x 1 (100mm).
- Non-return valves x 2
- Clamping rings x 8

Application:

Domestic premises without technical means to connect sanitary facilities to gravity sanitary sewage system - basements, attics and other rooms converted for sanitary purposes.

Name	Head (m)	Flow (I/min)	Tank capacity (I)	Voltage (V)	Motor power (W)	Dimensions L/H/W (cm)	Weight (kg)	Max. temp (°C)	Ingress Protection	Liquid PH
SANIBO 4	9	300	6	230	600	51x32x22	9,5	90	IP 44	4 - 10

TOILET PUMPS

Bathroom sewage pumping station. Many years of experience allowed us to design a top quality device for a wide range of applications. The main application of the pump is to remove sewage from toilets, however use of three inlets allows to collect sewage from, e.g. bath, washing machine and toilet - one main 100 mm inlet for toilets, 40mm for shower bases or wash basins, and one 40mm outlet. The pump is exceptionally quiet so it is an ideal solution for domestic applications. SANIBO 5 is equipped with end caps to cover unused inlets. The pump can also be used in kitchens or laundry rooms, without connecting to the toilet. It has a float switch for automatic pump control - the pump automatically stops after filling the device. Additionally, the pump can be started manually. An additional advantage of the device is the ability to pump liquids of up to 40°C (short-term 60°C) for up to 2 minutes. Due to the 9.5 metre head vertically and 100 metre horizontally, there is no need for gravity sewage disposal. Its operating cycle is approx. 8 seconds. Sanibo 5, as the only branded pump available on the market has stainless steel motor housing, strainer and cutting system providing for guaranteed reliability,

438

and a powerful pump motor is provided with built-in thermal protection. The device is designed according to the most demanding European standards.

The set includes:

- WC pumps with cutting system
- End caps: x 2 (40mm), x 1 (100mm).
- Non-return valves x 1
- Clamping rings x 8

zobacz działanie i budowę ромру na: http://bit.ly/sanibo

Application:

Domestic premises without technical means to connect sanitary facilities to gravity sanitary sewage system - basements, attics and other rooms converted for sanitary purposes. Water and sewage pumping in places where toilets, wash basins or shower bases are installed outside the stack and riser or below the sewage discharge level.

Link to the video:

https://www.youtube.com/watch?v=dofSLSY6tns

PARAMETERS

Name	He	ead n)	Flow (l/min)	Tank capacity (I)			Dimensions	Weight (kg)	Max. temp (°C)	Ingress Protection	Liquid PH
SANIBO 5	9,	,5	150	6	230	600	44x29x24	8,5	40 (60)*	IP 44	4 - 10

o z tym ?

CONTROLLERS / PROTECTIONS STEUERUNGEN / SICHERUNGEN OVLADAČE / OCHRANY CONTROLERE / PROTECŢII КОНТРОЛЛЕРЫ / УСТРОЙСТВА ЗАЩИТЫ

de:

PROTECTIONS / CONTROLLERS

M121/M131

Professional pump protections

The M121 and M131 Intelligent Pump Controller is an easy-to-use control and protection device for direct connection of deep well pumps, submersible pumps and surface pumps:

- M-121 for single-phase pumps from 0.75 kW to 2.2 kW (from 1 HP to 3 HP)
- M-131 for 3-phase pumps from 0.75 kW to 4kW (from 1HP to 5 HP) 5.5 kW 7.5 kW (from 7.5 HP do 10 HP).

CONTROLLER OPERATING FUNCTIONS

- Automatic re-start attempt after emergency stop enforced by one of the protection functions. Different self-activation timers for different emergency conditions.
- Possibility to calibrate the controller and change its calibration to match the pump
- parameters.
- Activating and deactivating the pump depending on: - water levels in the tank from which water is pumped,
- water levels in the tank from which water is pumped,
 water levels in the tank to which water is pumped,
- pressure in the tank to which water is pumped.
- Manual or automatic operating mode.

CONTROLLER PROTECTION FUNCTIONS

- Double dry run protection by means of:
- Liquid level probes/ sensors
- Analysis of current consumption during pump operationOverload protection
- Phase failure protection (M31)
- Voltage drop protection
- Voltage surge protection
- High voltage protection
- Short circuit protection
- Overvoltage protection

metered

M21/M31

OPTIONS:

In addition to the M121 and M131 controller, M-21 and M-31 controllers are available with additional features, such as:

- Displaying of total pump operation time
- Displaying history of the last five failures when the protections have been activated
- Dynamic LCD screen displaying the current status of the pump.

EXAMPLES OF INTELLIGENT CONTROLLER APPLICATION

PROTECTIONS / CONTROLLERS

IBOPRESS 10

Electronic pressure switch with overload and dry running protection.

IBOPRESS 10 is a device designed to control the operation of all types of pumps depending on the system pressure. It starts or stops the pump depending on the pressure.

IBOPRESS 10 is a modern electronic controller based on a ceramic pressure sensor.

Cut-in and cut-out pressure can be programmed with the device.

BOPRESS 10 provides protection features - it allows to set the maximum permissible current draw of the pump and protects the pump against dry running.

After an emergency stop, the device can automatically resume its operation after the set timer.

The IBOPRESS switch is supplied with a cable and a mains plug, and a second cable with an electric socket, for hasslefree connection to the electric pump's power supply.

Due to the high measurement accuracy, the device can be installed

in systems where constant, unchanging operating conditions are required.

Due to its stainless steel design, the IBOPRESS 10 switch is protected against corrosion and mechanical damage, and the measurement and operation is very precise.

Pressure range in controlled system	0-10 Bar			
Reading accuracy	0,01 Bar			
Units display depending on user choice	Bar, kg/cm2, PSI			
Inlet/outlet	1/4"			
Measured medium max. temperature	85oC			
Max. ambient temperature	40oC			
Supply voltage	Single-phase AC 60/60 Hz			
Supply voltage	220-240V			
Connected pump max. power	1,5 kW			
Max. current draw	10A			
Ingress Protection	IP 55			
	Dry run protection			
	Stalled motor overload protection			
Protections	Low flow protection - when the pump does not reach the set cut- out pressure and runs for more than 30 minutes, its stop function can be activated.			
	Hydraulic shock protection - so-called soft stop			
Display	Colour, LCD			
Life-span	1 000 000 cycles			

SWITCHES / PROTECTIONS

DIG-IBO 1

Intelligent pressure switch for pump operation control. DIG - IBO is an electronic device with two main functions:

- PUMP OPERATION CONTROL (cut-in and cut-out pressure can be set from an electronic display panel)
- DRY RUN PROTECTION AGAINST (if the function is active and the pump operates without water for more than 20 seconds, the device will stop the pump. Dry run protection is active by default - if for any reason, the user does not want to leave this function active, it can be disabled by pressing and holding buttons 2 and 4 together for 3 seconds - "F0" (function disabled) or F1 (function enabled by default) will be displayed on the panel. If no operation is performed within 3 seconds, data will be automatically saved and the device will return to the operating mode.

The controller activates the pump when water pressure in the water system drops below the minimum pressure set on the display, and water starts flowing in the pipe on which the controller is installed. When no flow is detected by the controller, the pump will be stopped.

TECHNICAL DATA

- Operating range 0-10 bar
- Supply voltage: 230V, 50Hz
- Ingress Protection: IP66
- Maximum pump power: 1.5kW
- Maximum water temperature: 80 °C

Cut-out pressure setting - H Cut-in pressure setting - L

Use the buttons (arrow) to set the limit, the up arrow - to increase, the down arrow - to decrease. When finished, the switch will save the settings automatically and return to the operating mode.

HYDRO-BLOCK (SK-13)

Devices protecting the pump against damage caused by dry running. The device will automatically stop the pump if the water pressure in the system drops below the cut-out level - 0.7 bar. The device has the RESET button. The pump is first activated by pressing the RESET button. When the system pressure exceeds 1.1 bar, the device will start operating in automatic mode. The device should operate in water supply systems with a pressure tank. The device can be directly connected to single-phase motor pumps. It can be connected three-phase motor pumps via a contactor.

The device is suitable for surface pumps only. Warning!!! The HYDRO-BLOCK pressure controller cannot be used instead of a pressure switch.

HYDRO-BLOCK (SK-13)

AUTOMATIC PUMP CONTROLLERS

PC-13

The PC-13 automatic pump controller provides start and stop control functions. The automatic pump controller starts the pump when water pressure in the water system drops below the minimum pressure set on the automatic pump controller, and when water starts flowing in the pipe on which the PC-13 is installed. The controller stops when water flow in the pipe on which the PC controller is installed is stopped. The controller starts the pump when a tap or sprinklers are opened, and stops the pump when they are closed. The controller has a dry-run protection function (pump operation without water). If no water is detected, the controller will stop the pump to protect it against damage. The controller can be connected directly to pumps with motor electrical demand not greater than 10 A (16 A at starting). The controller protects the system against flooding resulting from minor leaks. Leaks cause pressure drops in the system, but the controller will not start because it does not detect water flow (with small leaks, the water flow is insignificant). The device is supplied with a 1 m long cable with a plug and a 60 cm long cable with a socket.

PC-15

Automatic pump controller for up to 1300 W surface and deep well pumps. It can be used instead of a pressure switch and pressure tank. When the tap is opened, a signal is sent to the PC-15 controller and it starts the pump. When the tap is closed, the PC-15 controller stops the pump. The automatic pump controller can operate with single-phase pumps with current draw not exceeding 10A during operation. The device is supplied with dry run protection. When no water is detected in the well, the device will stop the pump. The device is equipped with a 60 cm long cable for connection with the pump and a 1 m long power cable with a plug. The PC-15 automatic pump controller is equipped with 1" inlet and outlet.

PC-59

The PC-59 controller is an electronic device for pump control. It controls the pump operation by monitoring pressure changes in the pipeline and the water flow through the pipeline. With user-adjustable cut-in and cut-out pressure, the device can be used instead of traditional pressure switches. It also protects against dry running. A built-in nonreturn valve prevents water backflow to the pump. The pressure gauge with marked cut-in and cut-out pressure levels provides accurate and easy adjustment of the device according to user requirements. The device can operate with and without a pressure tank. The PC-59 automatic pump controller is equipped with 1" inlet and outlet. The device is supplied with a 60 cm long cable for connection with the pump and a 1 m long power cable with a plug.

PC-59	PC-15P	PC-13	Functions / Construction Characteristics:	Technical Data:
х	Х	Х	Inlet (suction) connection: 1"	
Х	Х	Х	Outlet (pressure) connection: 1"	
Х	Х	Х	Built-in check valve	
Х	Х	Х	Dry-running protection system	 Power supply voltage ~ 220/240V Protection class: IP 65
х	Х	Х	Built-in pressure gauge	Maximum water temperature: 40oC
Х	Х	Х	Manual start button - RESET	 Cut-in pressure: 1.5 - 3 bar Maximum permissible pressure
Х	Х	Х	POWER ON LED	in the system 10 bar
х	Х	Х	Pump operation ON LED	Maximum current 16(10) A
х	Х		Pump failure LED	
Х			Operation with pressure tank	
			Automatic restart	

AUTOMATIC PUMP CONTROLLERS

SK-15

Automatic pump controller for surface and deep well pumps. It can be used instead of a pressure switch and pressure tank. When the tap is opened, a signal is sent to the SK-15 controller and it starts the pump. When the tap is closed, the SK-15 controller stops the pump. The automatic pump controller can operate with up to 1300 W single-phase pumps with current draw not exceeding 10A during operation. The device is supplied with dry run protection. When no water is detected in the well, the device will stop the pump. The SK-15 automatic pump controller is equipped with 1" inlet and outlet. The device is supplied with a 1 m long cable with a plug and a 60 cm cable with a socket.

PC-10P

Automatic pump controller for surface and deep well pumps. It can be used instead of a pressure switch and pressure When the tap is opened, a signal is sent to the PC-10P controller and it starts the pump. When the tap is closed, the PC-10P controller stops the pump. Compared to the other device, this automatic pump controller can operate with up to 2200 W single-phase pumps with current draw not exceeding 16 A during operation. The device is supplied with dry run protection. When no water is detected in the well, the device will stop the pump. The PC-10P automatic pump controller is equipped with 1" inlet and outlet. The device is supplied with a 1 m long power cable with a plug and a 60 cm long cable with a socket for connection with the pump

PC-16

Automatic pump controller for surface and deep well pumps. It can be used instead of a pressure switch and pressure tank. When the tap is opened, a signal is sent to the PC-16 controller and it starts the pump. When the tap is closed, the PC-16 controller stops the pump. The automatic pump controller can operate with up to 1300 W single-phase pumps with current draw not exceeding 10A during operation. The device is supplied with dry run protection. When no water is detected in the well the device will stop the pump. Compared to other controllers, the PC-16 has the restart function. The PC-16 has an automatic restart function. The device makes attempt to automatically restart the pump after stopping caused by dry running. If no water flows into the well, the device will stop the pump again. The cycle will be repeated several times a day from the first activation of the pump. This solution is best suited for automatic irrigation. Easy-to-install. Supplied with a 1 m long power cable

with a plug and a socket for connecting the pump. The PC- 16 automatic pump controller is equipped with 1" inlet and outlet.

SK-15	PC-10P	PC-16	Functions / Construction Characteristics:	Technical Data:
Х	Х	Х	Inlet (suction) connection: 1"	
Х	Х	Х	Outlet (pressure) connection: 1"	
Х	Х	Х	Built-in check valve	 Power supply voltage ~ 220/240V
Х	Х	Х	Dry-running protection system	 Protection class: IP 65
Х		Х	Built-in pressure gauge	 Maximum water temperature: 40oC Start pressure: 1,5 - 3 bar
Х	Х	Х	Manual start button - RESET	Maximum operating system pressure: 10
Х	Х	Х	POWER ON LED	 bar Max. current draw for SK-15 i PC-16: 16(10)A
Х	Х	Х	Pump operation ON LED	Max. current draw for PC-10P: 16A
Х	Х	Х	Pump failure LED	
			Operation with pressure tank	
		Х	Automatic restart	

PC-16

Sk-15

BU SWITCHES / PROTECTIONS

PC 2

Pressure switches are designed for automatic starting and stopping booster sets with surface and deep well pumps equipped with electric motors.

The switches control the operation of the devices depending on the cut-in and cut-out pressure settings.

Switch body is made of durable plastic with copper or silver contacts. Depending on the model, the switches have different values of possible operating modes in a specified pressure range.

The PC-2 switch is additionally equipped with a pressure gauge and its design is based on a five-way discharge outlet so it can be used as a complete booster set fitting. PC-2 has 1" inlet and outlet.

The LCI and LCA switches can be used with 400 V ~ 3/50 Hz three-phase AC motors. In addition, the LCI is available with a nipple with 1/2" outer thread.

LCA switches are made by Polish manufacturer of pumps in Grudziądz

PARAMETERS									
Name	Pressure range (Bar)	Max. amperage (1f/3f)	Voltage (V)	Inlet/outlet diameter (cale)	Thread type				
LCI 2	1,0 - 6,0	16A	230/400	1/4 / 1/2	Female/Male				
LCA 1	1,0 - 4,0	16A / 10A	230/400	1⁄2	Female				
LCA 2	2,0 - 8,0	16A / 10A	230/400	1⁄2	Female				
LCA 3	3,0 - 11,0	16A / 10A	230/400	1⁄2	Female				
PC - SK/2	1,6 - 4,6	12A	230/400	1⁄4	Female/Male				
PC - 2	1,6 - 4,6	12A	230/400	1	Male				
PC-9	1,6 - 4,6	12A	230/400	1⁄4	Female				

FITTINGS / ACCESSORIES

ASSEMBLY ADHESIVE FOR FITTINGS

The adhesive for sealing all connections and joints between metal parts.

FLOAT SWITCHES

Electromechanical switches for controlling electrical equipment operation that depends on the liquid level. The switches are made of durable plastic and rubber electric wire (H07RN-F). The float switches are supplied with 60 cm, 5 m (with weight), and 10 m (with weight) power cables.

FLANSZA

Galvanized steel spare part for pressure tanks

MEMBRANES

EPDM synthetic rubber membranes for pressure tanks. The membrane separates water and air part of the tank. The membranes are made in Italy in accordance with the most demanding European. All membranes are certified for food contact. Sizes available: 24 L, 35 - 50 L, 80 L, 100 L, 150 L.

COUPLINGS

Aluminium couplings for connecting hoses.

CONNECTORS

Aluminium connectors for connecting pumps with hoses

CONTROL BOXES

Enclosed plastic control box for starting single-phase motors. The boxes have a built-in capacitor, over-current protection and a cable with a plug. Depending on type, the boxes are intended for 0.75kW/ 1.1kW/ 1.5kW/ 2.2kW 230V ~/ 50Hz motors.

Name	Capacitor	Protection
0,75kW	35uF	8A
1,1kW	40uF	11A
1,1kW	45uF	12A
1,5kW	55uF	14A
1,5kW	60uF	15A
2,2kW	70uF	20A
2,2KW	80uF	20A

In-line filters for purification and treatment of water from own intakes and water supply networks. Universal filters made of durable materials to guarantee long-term and faultless operation. Each housing is equipped with a clamp wrench. Available types of cartridges: ceramic, carbon,

mesh, string wound and foam. Housings and cartridges are available in sizes of 5/2.5" and 10"/2.5".

Depending on the system requirements, the housings have the following inlets/ outlets: 1"/3/4"/1/2".

Application: Households

	TECHNICAL DATA
Mesh filter	Mesh filter cartridge for filtering mechanical impurities, such as sand, rust and various types of sediments found in water.
String wound	String wound filter cartridge for filtering mechanical impurities. The cartridges are made of polypropylene string. Degree of filtration - 5um.
Ceramic filter	Ceramic filter cartridge for filtering mechanical impurities, such as sand, rust and various types of sediments found in water. Higher filtration accuracy compared to string and foam filters.
Foam filter	Foam filter cartridge for filtering mechanical impurities, such as sand, rust and various types of sediments found in water. Degree of filtration - 5um.
Carbon filter	Carbon filter block cartridge. Filter designed to reduce chemical compounds. It Improves the taste of water and removes any unpleasant odours

- Housing made of reinforced polypropylene;
- Two O-rings to ensure leak-tightness;
- The transparent housing for visual assessment of contamination;
- Complete with clamp wrench and mounting bracket:
- Max. pressure 8 bar;
- Temperature range 2-45°C.

Available sizes make the housings suitable for most standard cartridges.

- Our housings are suitable for the following cartridges:
 - mechanical cartridges: foam and string;
 - reusable mechanical cartridges: mesh;
 - Active cartridges: carbon block, carbon granulate, softening and ceramic.

Application:

- mechanical cartridges: main water supply pipes in apartments and small houses;
- carbon and softening cartridges: single water intake points, such as taps.

FITTINGS / ACCESSORIES

SAND FILTERS

Filters designed to remove mechanical impurities with minimum particle size of 120 microns. The filter is usually installed downstream the water supply point upstream the main water intake in the building.

These filters are often installed with surface pumps in order to protect the hydraulic components against abrasive mechanical impurities.

The disk cartridge protects against mechanical impurities such as sand and dust, but not against water deposits such as iron.

The main advantage is the durable design so both the housing and the cartridge can be used for many years. The filters have reusable cartridges that should be cleaned, e.g. by rinsing - the cartridge can be removed and rinsed under pressure.

The housing is made of impact and chemical resistant plastic.

Disk and mesh filters are used in agriculture, irrigation, gardening and domestic use to protect the pump and water supply system against contamination.

In addition to disk cartridges, mesh cartridges are available upon request.

W

Name	Q max	Max. pressure	Filtration	Filtration area	Dimensions(mm)
¾″ Disc Filter	75 l/min	8bar	120	160	130/ 176/ 83
1" Disc Filter	100 l/min	8bar	120	160	173/ 190/ 89
1 ¾″ Disc Filter	200 l/min	8bar	120	265	230/ 250/ 120
1 1⁄2" Disc Filter	200 l/min	8bar	120	265	230/ 250/ 120

FEATURES AND ADVANTAGES Compact size

- Micron rating precise filtration
- Chemical resistance •
- Drain valve
- High efficiency
- Durability

UV STERILIZERS

UV sterilizers are used to purify/disinfect water from bacteriological contamination that may exist in water sources, e.g. shallow wells or surface intakes. Disinfection is based on the bactericidal effect of the UV lamps in the sterilizer. The principle of their bactericide action is the absorption of UV light by the DNA structures of microorganisms. Proper selection of UV rays strength and exposure time can kill almost all microorganisms by destroying their DNA.

Water treatment with UV Irradiation is one of the most effective and safest methods of water purification because water is not purified by chemical compounds. Another advantage is the lack of influence on water taste and smell. Depending on the water demand, sterilizers can be equipped with 1 to up to 8 lamps. Lamps used in IBO sterilizers are manufactured by Philips and their service life is 8000h. The smallest sterilizers are designed for 1 l/min. flow, the largest available on request for flow up to 3600l/min. When using sterilizers with UV lamps, it is important to leave the lamps on even if there is no water flow because frequent on/off switching significantly reduces their life.

It should be remembered that the efficiency of the sterilizer depends largely on the quality of the water that flows through it, so we recommend to install in-line filters upstream the sterilizer to remove any mechanical impurities, such as sand. Moreover, the iron content and water hardness also affect the effectiveness of water purification. The iron in the water should not exceed 0.1mg/l while the hardness of the water should be less than 110 CaCo3mg/l.

APPLICATION:

- Filtration of utility water
- Filtration of water in fish keeping
- Filtration of water in garden ponds
- Filtration of water in swimming pools

DETAILS:

- Protective tube made entirely of quartz for low suppression of radiation.
- Simple operation and quick radiator replacement
- Lamp life time: over 8000h
- Transformer with grounding cable (230 V), O-rings and adapters included
- AISI 304 stainless steel body
- · Working pressure up to 10 bar
- Inlet/outlet type outer thread.

Demontrary I /min	Przepływ I/min Power (W)	Quartzhody	Quartz body	Quartz body	Quartzbody	Quartzbody	UV Lamp	Lamp head	Number	Lamp	Dimensions (mm)				
<i>нгерну</i> wi/min	Power (W)	Quartz body	0v Lamp	diameter	of lamps	Lamp	А	В	с	G	ø				
1	4	230	150	16	1	PHILIPS	236		164	1/4"	2"				
2	6	230	227	16	1	PHILIPS	236		164	1/4"	2"				
4	11	296	227	16	1	PHILIPS	300		227	1/4"	2"				
8	16	360	303	16	1	PHILIPS	330	305	260	1/2"	2 1/2"				
24	25	498	452	26	1	PHILIPS	470	448	378	1/2"	2 1/2"				
40	30	955	895	26	1	PHILIPS	927	905	835	3/4"	2 1/2"				
48	55	955	895	26	1	PHILIPS	927	905	835	3/4"	2 1/2"				
90	110	955	895	26	2	PHILIPS	927	905	835	1"	5"				
135	165	955	895	26	3	PHILIPS	927	905	835	1 1/2"	5"				

WELL FITTINGS / HOSES BRUNNENZUBEHÖR / SCHLÄUCHE STUDNOVÉ PŘÍSLUŠENSTVÍ / HADICE ACCESORII DE PUȚ/ FURTUNURI CKBAЖИННОЕ ОБОРУДОВАНИЕ / ШЛАНГИ

BU WELL FITTINGS & ACCESSORIES

CABLE CONNECTION

When purchasing deep well and submersible pumps, our customers can choose to extend the electric cable by any length using a sealed cable connection. Depending on:

- pump motor power
- number of wires
- cable length to be connected,
- our consultants will find the power cable with proper cross-section.

Each connection is manufactured in three stages:

- 1. Each wire is soldered separately to ensure proper current flow.
- 2. After soldering, each wire is sealed with a heat-shrink tubing filled with glue.
- Then, the tubing is heat-sealed.
- 3. During the last stage, outer heat-shrink insulation is applied with more glue, which when heated fills the entire cable connection.

This procedure of connecting the cable guarantees long-term tightness and faultless operation. All connectors made by Dambat are covered by our warranty conditions.

INOX STEEL WIRE ROPE, POLYPROPYLENE ROPE

INOX ROPE: 7x7 stainless steel strand cores. The ropes can be used to suspend deep well pumps in wells and boreholes. The rope is made of AISI 304 stainless steel what makes is fully resistant to weather conditions. The ropes are supplied with stainless steel brackets and aluminium clamps.

PP ROPE: braided ropes made of polypropylene are flexible and lightweight alternatives to steel ropes. PP ropes are rotproof, resistant to oil, water, petrol and most chemicals. Polypropylene ropes are the only ropes that are not submersible. Ropes are available in sizes: 6mm, 8mm, 10mm.

MARAMETERS

Name	Diameter (mm)	Cross-section	Max. Load (m)	Tensile strength (N/mm2)	Weight (kg)	Breaking load (kN)
3mm INOX Rope	3	7x7	520	1770	0,037	5,07
6mm PP Rope	6	oplot	500	21%	0,017	5,0
8mm PP Rope	8	oplot	900	21%	0,030	9,0
10mm PP Rope	10	oplot	1200	21%	0,045	12,0

WELL FITTINGS & ACCESSORIES

WELL TOP PLATES

Covers used for tight closing of deep well casing pipes through which the discharge pipes go in. Tight closing is provided by the gasket forced against the casing pipe. Tightly sealed well is protected against contamination and penetration of surface water. The well top plates are available in three versions made of plastic, steel and galvanized cast iron. All well top plates are equipped with a metal hook to support the pump, and a cable gland for tight routing of the power cable. Different sizes of connection threads allow the connection of pipes of different diameters. Depending on the design, well top covers are suitable for 110mm to 160mm casing pipes, i.e. for 4" and 6" wells.

Well top cover includes:

- Hydraulic connection (gasket) for connecting the discharge pipe
- Cable gland for connecting and routin
- the power cable through the well top cover
- Metal hook for attaching the pump support rope.
- Male thread or access hole tightened with a gasket.
- Seal for tightening the discharge pipe and the casing pipe.

	wen sear type										
SIZE	Male thread (galvanized)	Access hole (galvanized)	Access hole (plastic)								
110/25 mm	х										
110/32 mm	х	x									
110/40 mm		x									
125/25 mm	Х										
125/32 mm	Х	x									
125/40 mm	х										
160/40 mm	x		х								
160/50 mm	х		х								
160/60 mm		x									

Well seal type

WELL FITTINGS & ACCESSORIES

WELL COUPLING

The well coupling is an innovative solution for easy installation/removal of deep well pumps in wells.

The brass coupling allows the pump to be hung directly in the well hole without the need for discharge pipe to be extended above the surface. Thus, it protects the well against contamination or penetration of surface water. Also, there is no need to use a concrete well casing where a discharge

pipe and a casing pipe with a well top plate are mounted.

The water drainage pipe is located below frost point and has a direct connection to the housing via a brass adapter. The coupling thus makes installation of deep well pumps very easy. All components are buried.

COUPLING FEATURES

- no need to use a concrete well casing and a well seal.
 - protection of the well against contamination
- easy access to the well
- very easy pump removal
- suitable for 2.5"/ 3" / 3.5"/ 4" pumps
- pipeline installed below the frost line
- available in 1"and 1 1/4" sizes

CENTRALIZER / TORQUE ARRESTOR

Application:

The centralizer is used to stabilize the pump inside the well pipe and to prevent the pump movement during the motor starting torque.

Design:

The centralizer is made of durable rubber, the shape of which can be adjusted depending on the size of the well. The centralizer is cut longitudinally and has two clamps on each end for mounting it on the discharge pipe. By bringing the centralizer clamps closer to each other, its diameter will increase and it will adapt to the diameter of the well.

Installation:

The centralizer should be mounted on the discharge pipe. To install it, tighten the clamps so it does not move along the discharge system.

It is important to tightened the top clamp more than the bottom clamp so that the pump can be easily removed if necessary. The bottom centralizer clamp should be 10-20 cm above the pump. The centralizer should be adjusted to the diameter of the well, but not too tight to allow easier lowering of the pump into the well.

Properties:

The centralizer is designed for systems with 1"to 11/4" discharge pipes and 4" to 8" casing pipes. The clamps included are made of stainless steel.

PRESSURE REGULATORS

1

ł

Brass regulators designed to regulate input pressure in water and air systems. They also protect the systems against pressure spikes. Compact size and low-noise operation. Pressure regulators are available in sets with pressure gauges.

SIZE		Inlet/outlet (inch)	Weight (g)	Max. input pressure (bar)	Input pressure (bar)	Temperature (°C)	Insert	Filtr	L	н	А
DN1	5	1⁄2	510	16	1 - 6	0 - 85			79,5	63	92
DN20	0	3⁄4	530	16	1 - 6	0 - 85			79,5	63	92
DN2	5	1	786	16	1 - 6	0 - 85	Duese	ASI309	85	78	112
DN32	2	1¼	830	16	1 - 6	0 - 85	Brass	stainless steel	85	78	115
DN40	0	11⁄2	1603	16	1 - 6	0 - 85			96	102	150
DN50	0	2	1974	16	1 - 6	0 - 85			115	102	178

NON-RETURN VALVES

SIZE	Weight (g)	Temperature (°C)	Max. input pressure (bar)	Insert
1/2	130	(-15) - 120	16	
3⁄4	205	(-15) - 120	16	
1	250	(-15) - 120	16	Drees
1¼	410	(-15) - 120	16	Brass
11/2	660	(-15) - 120	16	
2	1000	(-15) - 120	16	

STOP VALVE FOR PRESSURE VESSELS The valve is intended for mounting pressure vessels in central heating

and hot water systems. Pressure vessels can be quickly mounted or dismounted for maintenance or replacement. The valve prevents the liquid outflow from the system during vessel removal. Max. pressure: 10 bar Max. temperature 100oC

FIVE-WAY DELIVERY OUTLET Brass outlet for mounting pressure fittings.

Connection thread diameter: 1"- pump connection, 1" delivery system connection, 1"- anti-vibration hose connection to the tank, χ " - pressure gauge connection, χ "- pressure switch connection. Available outlets are 70 mm and 90 mm high.

Connection / height	70 mm	80 mm	90 mm	120 mm
Pump connection	1"	1 1/4"	1"	1"
Delivery system connection	1"	1 1/4"	1"	1"
Anti-vibration hose connection	1"	1 1/4"	1"	1"
Pressure gauge connection	1/4"	1/4"	1/4"	1/4"
Pressure switch connection	1/4"	1/4"	1/4"	1/4"

PRESSURE GAUGE

The pressure gauge is used to measure the pressure in the system. Operating range is from 0 to 10 bar, $\frac{1}{4}$ inlet/outlet with male thread.

BI INSTALLATION ACCESSORIES & FITTINGS

ELECTRICAL CABLES

HUTRN.F.

H07RN-F rubber heavy duty power and control cable 450/750 V, for in industrial and agricultural applications. Class 5, from -25°C to 60° C, oil resistant, flame retardant

Compliance: PN-EN 60228 / PN-EN 60332-1

Features

- Resistant to low temperatures
- Resistant to mechanical damage
- Oil resistant
- UV radiation resistant

Application:

- Hand and power operated equipment
- Medium mechanical loads
- Industrial and agricultural applications
- In dry, wet and humid environments

Depending on the batch, the dimensions may differ from the data specified below.

Nominal voltage	450/750V
Conductor material	copper
Number of conductors	3 / 4
Identification of conductors	Colour
Type of cores	Multi-strand (flexible)
Conductor insulation	Rubber (EPR)
Conductor class	Class 5 = flexible
Sheathing material	Rubber (EPR)
Permissible cable temperature	(-25) - (+60)
Sheathing colour	Black
Shape	Round
Sheating	chloroprene rubber, oil resistant, flame retardant

	llość żył / Kolor izolacji			
Model (Ilośc żył x śrenica żyły (mm²)	robocze	ochronne		
	2 (brązowa, niebieska)	1 (żłóto-zielona)		
	Średnica zewr	nętrzna (mm²)		
3 x 1,5mm²	9	,5		
3 x 2,5mm²	10,5			
3 x 4mm²	13			
3 x 6mm²	14,5			
3 x 10mm²	22,4			
		-, ·		
		olor izolacji		
Model		·		
Model (Ilośc żył x śrenica żyły (mm²)	llość żył / Ko	olor izolacji		
	llość żył / Ko robocze 3 (brązowa,	olor izolacji ochronne		
	llość żył / Ko robocze 3 (brązowa,	olor izolacji ochronne 1 (żłóto-zielona)		
(llośc żył x śrenica żyły (mm²)	llość żył/Ko robocze 3 (brązowa, czarna niebieska)	olor izolacji ochronne 1 (żłóto-zielona) 0,5		
(Ilośc żył x śrenica żyły (mm²) 4 x 1,5mm²	llość żył / Ko robocze 3 (brązowa, czarna niebieska) 10	olor izolacji ochronne 1 (żłóto-zielona) 0,5 2,5		
(llośc żył x śrenica żyły (mm²) 4 x 1,5mm² 4 x 2,5mm²	llość żył / Ko robocze 3 (brązowa, czarna niebieska) 10 12	olor izolacji ochronne 1 (żłóto-zielona) 0,5 2,5 4,5		
(llośc żył x śrenica żyły (mm²) 4 x 1,5mm² 4 x 2,5mm² 4 x 4mm²	llość żył / Ku robocze 3 (brązowa, czarna niebieska) 10 12 14	olor izolacji ochronne 1 (żłóto-zielona) 2,5 2,5 3,5 5,2		

MOTOR TYPE	MOC (kW)	1 mm²	1,5 mm²	2,5 mm²	4 mm ²	6 mm²	10 mm ²	16 mm ²
230V	0,37	50m	75m	125m				
230V	0,55	38m	57m	95m	152m			
230V	0,75	30m	45m	45m	120m	175m		
230V	1,1	22m	33m	53m	85m	127m	210m	
230V	1,5	23m	38m	63m	92m	154m	246m	
230V	2,2	28m	45m	67m	112m	180m		
400V	0,37	240m						
400V	0,55	164m	246m					
400V	0,75	133m	200m	233m				
400V	1,1	97m	146m	244m	390m			
400V	1,5	72m	109m	180m	290m	435m		
400V	2,2	51m	78m	130m	207m	310m	516m	
400V	3	41m	62m	104m	167m	250m	416m	
400V	4	31m	46m	77m	124m	186m	310m	496m
400V	5,5	33m	56m	90m	135m	225m	360m	
400V	7,5	25m	66m	100m	165m	270m		

FITTINGS / HOSES 🧿

ANTI-VIBRATION HOSES/CONNECTORS

Anti-vibration hoses with elbow:

AGE: Anti-vibration hos

Flexible anti-vibration hoses made of EPDM rubber approved for contact with drinking water, in a metal braid protecting the discharge pipe. Hoses have brass connections - an elbow with a rotary union and gasket on one end, and a nipple on the other end. The 30 cm hose has an external diameter of 19 mm and a female x male thread (1"x 1/2"). The 54 cm hose has an external diameter of 26 mm and a female x male thread (1"x 1"). The 60 cm,

70 cm and 80 cm hoses have an external diameter of 32 mm and a female x male thread (1"x 1").

APPLICATION:

Water distribution in heating and air-conditioning systems, domestic water systems. Flexible connections of pumps and pressure tanks, and all connections for distributing water of up to 90°C.

Anti-vibration connectors (straight)

Flexible anti-vibration connectors made of EPDM rubber approved for contact with drinking water,

in a metal braid protecting the discharge pipe. Connectors with brass connections - $\ensuremath{\mathsf{-}}$

an union with a gasket on one end, and a nipple on the other end. The offer includes 30, 40, 50, 60, 80, 100 cm connectors with female x male $(1" \times 1")$ threads.

APPLICATION:

Water distribution in heating and air-conditioning systems, domestic water systems. Flexible connections for distributing water of up to 90°C.

MARAMETERS

Elbow hoses	Diameter	Straight connectors	Diameter
30 cm	18 mm	30 cm	
54 cm	27 mm	40 cm	
60 cm		50 cm	32mm
70 cm	20 mm	60 cm	5211111
80 cm	32 mm	70 cm	
100 cm		80 cm	

SUCTION HOSES

4 and 7m plastic suction hoses for supplying water from various surface intakes using suction pumps.

The hose has a suction strainer on one end to prevent larger dirt, such as leaves from entering the system. On the other end, the hose has a 1" union joint to connect the hose to the pump inlet.

APPLICATION:

Water intake from dug and deep wells, lakes, rivers and reservoirs.

SUCTION HOSES – REINFORCED

Transparent light weight steel-wire-reinforced small-bend-radius hose. Reinforced hoses are used as suction and discharge hoses. They are resistant to negative pressure and can be used in adverse weather conditions.

APPLICATION:

Suitable for sucking and transporting water, oil and powder in manufacturing plants. Reinforced hoses are used in agriculture, civil engineering, irrigation, and industrial applications in systems supplying water and oil to installations and equipment. It can be used instead of rubber hoses and metal pipes.

Material: Helix PVC: steel wire OPERATING TEMPERATURE: from -5 °C to +65 ° C

Features:

- Very smooth inner wall and outer surface
- Reinforced with steel wire spiral
- Good resistance to crushing, abrasion and most chemicals
- Excellent resistance to pressure and negative pressure
- · Non-toxic and odourless

MARAMETERS

Reinforced suction hose									
Diameter	Inner (mm)	Outer (mm)	Length (m/roll)	Operating pressure (bar)	Test pressure (bar)				
3/4"	19	23	50	5	13				
1"	25	30	50	5	13				
1-1/4"	32	38	50	4	12				
2"	50	58	50	4	12				
3"	76	90	30	4	12				

FITTINGS / HOSES 🧿

Lightweight, flexible hose for delivery and suction with increased resistance to UV radiations. Their important feature is resistance to negative pressure. Helix hoses have lower weight compared to reinforced hoses.

APPLICATION:

In industrial applications, agriculture, for irrigation and civil engineering. It can be used instead of rubber hoses and metal pipes. It is suitable for transporting pellets, powder, grain, water in irrigation systems, as well as water and oil in industrial systems.

Material: Helix PVC: PVC wire OPERATING TEMPERATURE: from -5 °C to +65 ° C

FEATURES:

- Very smooth inner wall and outer surface
- Reinforced with steel wire spiral
- Good resistance to crushing, abrasion and most chemicals
- Excellent resistance to pressure and negative pressure
- Non-toxic and odourless

MARAMETERS

UV resistant helix suction hose							
Diameter	Inner (mm)	Outer (mm)	Length (m/roll)	Operatin pressure (bar)	Test pressure (bar)	Negative operating pressure (bar)	
3/4"	19	21	30	6	18	1,5	
1"	25	27,5	30	6	18	1,5	
1-1/4"	32	34,5	30	6	18	1,5	
1-1/2"	38	41	30	5	16	1,5	

Flexible discharge hoses for pumping water and sewage. Available versions:

- Eco flexible hose blue discharge hose with a maximum permissible pressure of 2 bar, in 50m sections, available sizes: 1"/2"
- PCV hose blue discharge hose with a maximum permissible pressure of 2 bar, in 50m sections.
- Available sizes: 04/09/20172/2.5/3
- With the weave braid (fire hose) and the weave braid with fast connections a white hose with a maximum permissible pressure of 8 bar. Available sizes: 1.5"/2"

APPLICATION:

Drainage of excavations and flooded rooms, pumping sewage, water from lakes, ponds, rivers with submersible pumps.

I ANAMETERS								
Model	1"	1 1/4"	1 1/2"	2"	3"	Max. pressure		
Eco rubber hose	50m	x	x	50m	x	2 bar		
Blue rubber hose	50m	50m	50m	50m	50m	2 bar		
Woven hose	30m	x	30m	20m / 30m	x	8 bar		
Woven hose with fast connections	x	x	x	20m / 30m	x	8 bar		
Woven hose with MAX fast connections	х	х	x	20m / 30m	x	8 bar		

FITTINGS / HOSES 🧿 📴

Swimming pool hoses - rolls:

Swimming pool hoses designed for connecting various pumping, filtering, vacuum and cleaning accessories and fittings. The hoses are made of high density polyethylene (HDPE), which provides flexibility, low weight and high durability. Material used ensure resistance to UV radiation, chlorine and adverse weather conditions.

Hoses are available in 50m rolls with 32mm and 38mm diameter, and any length being a multiple of 1m can be cut off.

Swimming pool hoses - sections:

Swimming pool hoses designed for connecting various pumping, filtering, vacuum and cleaning accessories and fittings. Hoses are available in 50m sections with 32mm and 38mm diameter with swivel connectors.

Operating temperature range: from -15 ° C to + 60 ° C Features:

- Very flexible and floating
- Smooth inner surface
- Crush resistant structure
- . High tightness
- Small bend radius .
- Tear resistance
- High tensile strength •
- Available in rolls or 11m sections with adapters.

PARAMETERS	

Model	Diameter	Length	Adaptery	Can be cut to length	Operating negative pressure	Test pressure
32 mm hose (roll)	1 1/4"	50m	No	Yes	0,8bar	4bar
38mm hose (roll)	1 1/2"	50m	No	Yes	0,8bar	4bar
11m/32 mm hose	1 1/4"	11m	Yes	No	0,8bar	4bar
11m/38mm hose	1 1/2"	11m	Yes	No	0,8bar	4bar

G B HOSE REEL IRRIGATION MACHINE

IBO 600

SPECIFICATION

- •
- Hose reel irrigation machine with a built-in bypass.Four-speed gear with a shaft fully immersed in an
- oil tray.Gear with PTO output for fast hose rewinding.
- Braking system for automatic hose unwinding.
- Automatic adjustment of rewinding speed
- depending on the hose diameter.
- Hose loosening protection.
- Uneven hose coiling protection.
- The hose reel irrigation machine is equipped with an electric hose reel speed control, a digital clock.
- Screw hose coiling system with a double guide and high precision adjustment.
- Stainless steel reel support on ball bearings and sealing ring.
- 360 ° rotating frame on a central plate with ball bearings.
- Trolley for lifting with a hand crank (or hand hydraulic pump) after sprinkling.
- A flexible rubber hose with connections for delivering water to hose reel irrigation machine.
- Adjustable wheel track and height.
- SIME slow-return sprinkler with a set of nozzles.
- Glycerin-filled pressure gauge at hose reel irrigation machine inlet.
- Ball-and-socket joint on a sprinkler trolley.
- Sprinkler equipped with a weight.
- Hot-dip galvanized reel trolley on pneumatic wheels.
- Hydraulic extending and retracting of telescopic jacks.

Model	PE hose (diameter / length)	Effective length (m)	Sprinkler efficiency (m3/h)	Input pressure (Bar)	Nozzle diameter (mm)	Weight (with water) (kg)	Weight (without water) (kg)
	63 x 300	340	10-21	5.5-10	12-16	1740	1120
	70 x 330	330	12-26	5.5-10	14-18	1840	1210
IBO 600	75 x 250	250	14-34	5.5-10	14-20	1730	1140
	80 x 160	160	16-37	5.5-10	16-22	1750	1100

HOSE REEL IRRIGATION MACHINE 5

IBO 610

SPECIFICATION

- Hose reel irrigation machine with a built-in bypass.
- Four-speed gear with a shaft fully immersed in an oil tray.
- Gear with PTO output for fast • hose rewinding.
- . Braking system for automatic hose unwinding.
- Automatic adjustment of rewinding speed depending on the hose diameter.
- Hose loosening protection.
- Uneven hose coiling protection.
- The hose reel irrigation machine is equipped with • an electric hose reel speed control, a digital clock.
- Screw hose coiling system with a double guide and . high precision adjustment.
- Stainless steel reel support on ball bearings and sealing ring.
- 360 ° rotating frame on a central plate with ball • bearings.
- Trolley for lifting with a hand crank (or hand hydraulic pump) after sprinkling.
- A flexible rubber hose with connections for • delivering water to hose reel irrigation machine.
- Adjustable wheel track and height. .
- SIME slow-return sprinkler with a set of nozzles.
- Glycerin-filled pressure gauge at hose reel irrigation • machine inlet.
- Ball-and-socket joint on a sprinkler trolley. •
- Sprinkler equipped with a weight.
- Hot-dip galvanized reel trolley on pneumatic wheels.
- Hydraulic extending and retracting of telescopic • jacks.

А	В	с	D	E	F	G	KG
2100	1900	3210	5000	2070	2320	2670	1680

Model	PE hose (diameter / length)	Effective length (m)	Sprinkler efficiency (m3/h)	Input pressure (Bar)	Nozzle diameter (mm)	Weight (with water) (kg)	Weight (without water) (kg)
	75 x 350	360	14-26	5.5-10	14-18	2075	1453
	82 x 320	330	19-48	5.5-10	16-24	2350	1680
IBO 610	90 x 300	310	25-52	5.5-10	18-28	2400	1790
	100 x 200	220	26-60	5.5-10	20-28	2460	1820

 PERFORMANCE OVERVIEW

10 3 850 4,5 4,7 4,9 5 5,3 5,6 5,8 6,6 6,6 7,2 7,5 7,8 8,4 9,1 9,6 10 30 4 1180 6,1 6,5 7 7,2 7,5 8,1 8,5 9,6 10,2 11,2 30 4 1180 6,1 6,5 7,9 8,6 8,9 9,0 1,0	(mm)	Nozzle diameter (mm)	Pressure at the nozzle (bar)	Flow											
Image Image <t< th=""><th></th><th></th><th>atm</th><th>l/min</th><th>150m</th><th>200m</th><th>250m</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			atm	l/min	150m	200m	250m								
10 3 10 3 4 4 4 5 6 <th6< th=""> 6 6 6</th6<>		10													
110 4 20 4.2 4.9 1.0 <th1.0< th=""> <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<></th1.0<>		10	3	160	5,2	5,8	6,3								
4 4 2 6 1	50	12	3	215	6,3	7,3	8,1								
N S															
atm btm		14													
1 2 3															
Image Image <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
h h <		14													
4 4	10														
Image Image <t< td=""><th>63</th><td>16</td><td>4</td><td>360</td><td>7,8</td><td>8,4</td><td>9,4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	63	16	4	360	7,8	8,4	9,4								
S S I		18	4	440	9,7	10,5	12								
10101010101010101010101010101130200606070		10													
10 3 3 36 50 </td <th></th> <td></td>															
11 3 3 7		16													
110 4 400 8.0 0.0 <th0.0< th=""> 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<></th0.0<>															
Participant	70	18													
100 150 <th></th> <td></td>															
1112130 <t< td=""><th></th><td>20</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td>14,6</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		20	5						14,6						
16 3 280 4.3 5.5 5.0 5.4 6.4 6.5 6.6 7.6 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.5 7.6 8.6 7.7 7.6 8.6 7.7 7.6 8.6 7.7 7.6 8.6 7.7 7.6 8.2 7.6 7.6 8.6 7.7 7.6 8.2 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.6 8.2 7.6 7.7 7.6 8.2 7.6 7.7 7.6 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.7 7.7 7.7			atm	l/min	200m	250m	300m	330m	350m	400m					
image image <t< td=""><th></th><td>16</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		16			-										
18 4 115 5 5 7 7 8 5 5 7 7 8 5 7 7 7 8 5 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 <th></th> <td></td>															
100 14 915 150 95 <th< td=""><th>75</th><td>18</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	75	18			-										
120 5 550 8,5 9,5 10,5 11,1 12 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 12,0 13,0 13,0 14,0 12,0 14,0 <th></th> <td></td>															
imageimageimageimageimageimageimageimageimageimageimageimageimage18229033.23.43.65.73.94.12034.04.755.45.95.77.68.27.7		20													
1 2 200 3 32 34 48 37 39 44 56 57 2 3 440 47 5 54 55 55 57 77 100											420m				
18 3 350 42 45 54 59 50 60 50 70 70 80 800		10													
20 4 515 6 64 7 7,6 8,2 8,7 9,2 10. 11.1 2 5 660 8,2 9 10. 11.1 12.1 13.3 14.2 15.4 16.4 13.2 14.2 15.4 16.4 15.5 30 30 30.7		18	3	350	4,2		4,8								
Image Image <t< td=""><th>82</th><td>20</td><td>3</td><td>440</td><td>4,7</td><td>5</td><td>5,4</td><td>5,9</td><td>6,3</td><td>6,7</td><td>7</td><td></td><td></td><td></td><td></td></t<>	82	20	3	440	4,7	5	5,4	5,9	6,3	6,7	7				
100 11.8 13.2 14.2 14.4 <th< td=""><th>02</th><td>20</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	02	20			-										
image image <th< td=""><th></th><td>22</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		22													
1 3 500 4,5 4,8 5,2 5,3 5,5 5,8 6,1 6,3 6,1 6,3 6,1 6,3 6,1 6,3 6,1 6,3 6,1 6,3 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 6,1 1,1 1,10 <th1,10< th=""></th1,10<>												450			
12 4 620 5.8 6.3 6.7 6.9 7.1 7.6 7.9 8.1 0 0 0 24 4 70 6.3 7 7.6 7.8 8.2 8.8 9.2 9.6 0 1.0 </td <th></th> <td></td>															
90 24 4 750 6,3 7 7,6 7,8 8,2 8,8 9,2 9,6 10,9 11,4 11,8 10,8 11,1 26 5 920 8,7 9,7 10,7 11,1 11,7 12,8 14,1 10,8 11,8 12,7 13,1 13,9 14,0 11,8 12,7 13,1 13,9 14,00 16,6 16,7 1,6 1,6,7 1,8 1,1		22													
90 24 5 820 8 86 93 96 10 103 11,4 11,8 100 10,7 26 66 0105 01,3 11,5 12,7 13,1 130 152 16 16.7 16 16.7 400															
126 66 1050 10,3 11,5 12,7 13,1 13,9 15,2 16,7 16,7 17,7 17,7 1 4 4 200 200 300 300 300 400 4207 400 10,2 11,6 12,8 14,1 14 15,2 100 100 10,0 11,5 12,6 13,4 13,8 15,2 16,6 18,0 100 100 100 100 10,8 10,9 11,8 12,9 13,8 15,2 16,6 18,1 11,9 10,9 10,8 10,9 11,8 12,9 10,8 10,1 11,8 12,9	90	24	5			8,6			10						
Image: bolic		26	5	950	8,7	9,7	10,7	11,1	11,7	12,8	13,5	14,1			
100 3 750 4.7 5 5,3 5,6 5,7 6,1 6,3 6,5 6,9 1 7 100 28 4 1000 6,7 7,1 7,7 8,1 8,3 9 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 10,5 11,6 11,6 11,8 11,6 11,7		20	6	1050	10,3	11,5	12,7	13,1	13,9	15,2	16	16,7			
100 26 4 850 6,1 6,4 6,9 7,2 7 7,9 8,1 8,5 9 10.5 100 28 44 1000 6,7 7,1 7,7 8,1 8,3 9 9,6 19,8 10,5 12,9 10.5 30 5 1250 9 9,7 10,6 11,2 11,6 12,8 11,4 14 15,2 12,9 10.6 30 65 1250 9 9,7 10,6 11,2 11,6 12,8 14,1 14 15,2 15,6 13,6 13,6 14,7 13,8 15,2 16,6 18,1 14,1 14,1 15,2 16,6 18,1 16,2 17,1 7,7 7,4 3,8 16,1 16,4 16,6 6,8 7,2 7,5 8,8 6,1 10,5 12,2 13,2 13,2 13,2 13,2 13,2 13,2 13,2 13,2 13,3 14,1<															
100 28 4 1000 6,7 7,1 7,7 8,1 8,3 9 9,6 9,8 10,5 10,5 30 25 1120 8,2 8,7 9,4 9,9 10,2 11,1 11,8 12 11,4 14,1 15,1 16,0 18,1 16,1 16,5 16,1 14,1 14,1 15,2 16,7 7,4 7,4 28 4 990 5,8 6,1 6,4 6,6 6,8 7,2 7,5 8,1 8,5 8,9 10,5 11,2 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3 11,3<		26													
100 28 5 1120 8,2 8,7 9,4 9,9 10,2 11,1 11,8 12,2 12,0 1 30 5 1250 9 9,7 10,6 11,2 11,6 12,8 14,1 14 15,2 16,6 18,0 16,0 16,0 18,0 10,0 11,0 11,0 13,0 30,00 40,0 40,0 50,0 30,0 30,0 40,0 40,0 50,0 5,0 1,0 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1															
30 5 1250 9 9,7 10,6 11,2 11,6 12,8 14,1 14 15,2 16,6 18,1 6 1400 10,7 11,5 12,6 13,8 15,2 16,6 18,1 7 7 4 0000 2000 2000 3000 3000 53,8 6,6 6,5 7 7,4 100 4 900 5,8 6,1 6,4 6,6 6,8 7,2 7,5 8,1 8,4 9,1 9,6 30 5 1250 7,5 7,9 8,6 6,8 7,2 7,5 8,1 8,9 9,6 10,5 11,2 30 5 1250 7,5 7,9 8,6 6,8 9,9 10,4 11,8 12,9 13,1 13,3 15,3 16,5 17,8 8,3 31 4 120 13,1 13,1 13,2 13,3 <th13,3< th=""> 16,3 17,3<!--</td--><th>100</th><td>28</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th13,3<>	100	28													
10010010,011,512,613,413,815,216,716,618,117.0100100100100200200300300300300400420450500500500600600200388504,54,74,955,35,65,866,577,4304411806,16,577,27,58,18,58,99,610,211,230512507,57,98,66,89,99,29,910,410,911,812,913,1310512507,57,98,68,99,29,910,410,911,812,913,13213394411806,16,577,77,27,58,18,58,99,610,211,232133914,716,711,111,812,913,113,315,316,417,118,720,221,13213324412905,75,96,26,46,66,97,17,37,98,38,933234314,715,111,111,512,213,414,111,311,414,114,114,114,114,13433443534,13434343534,134															
10 3 850 4,5 4,7 4,9 5 5,3 5,6 5,8 6,6 6,6 7,2 7,5 7,8 8,4 9,1 9,6 10 30 4 1180 6,1 6,5 7 7,2 7,5 8,1 8,5 9,6 10,2 11,2 30 4 1180 6,1 6,5 7,9 8,6 8,9 9,0 1,0		30	6		10,7							16,6			
1102849905.86.16.46.66.87.27.57.88.49.19.630411806.16.577.27.58.18.58.99.610.511.230512507.57.98.68.99.29.29.910.410.911.812.913.832610009.610.211.111.512.213.213.315.316.117.718.48.99.02.2132412905.75.96.26.46.66.97.17.37.98.38.932412905.75.96.26.46.66.97.17.37.98.38.932412905.75.96.26.46.66.97.17.37.98.38.932617.918.113.113.315.316.517.118.717.918.113.113.315.316.517.113.7 <th></th> <th></th> <th>atm</th> <th>l/min</th> <th></th> <th></th> <th></th> <th>,.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			atm	l/min				,.							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		20		<i>i</i> /11111	200m	250m	300m		350m	400m	420m	450m	500m	550m	600m
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		28		850	4,5	4,7	4,9	330m 5	5,3	5,6	5,8	6	6,5	7	7,4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		28	4	850 990	4,5 5,8	4,7 6,1	4,9 6,4	330m 5 6,6	5,3 6,8	5,6 7,2	5,8 7,5	6 7,8	6,5 8,4	7 9,1	7,4 9,6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110		4	850 990 1180	4,5 5,8 6,1	4,7 6,1 6,5	4,9 6,4 7	330m 5 6,6 7,2	5,3 6,8 7,5	5,6 7,2 8,1	5,8 7,5 8,5	6 7,8 8,9	6,5 8,4 9,6	7 9,1 10,5	7,4 9,6 11,2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	30	4 4 5	850 990 1180 1250	4,5 5,8 6,1 7,5	4,7 6,1 6,5 7,9	4,9 6,4 7 8,6	330m 5 6,6 7,2 8,9	5,3 6,8 7,5 9,2	5,6 7,2 8,1 9,9	5,8 7,5 8,5 10,4	6 7,8 8,9 10,9	6,5 8,4 9,6 11,8	7 9,1 10,5 12,9	7,4 9,6 11,2 13,8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	30	4 4 5 6	850 990 1180 1250 1600	4,5 5,8 6,1 7,5 9,6	4,7 6,1 6,5 7,9 10,2	4,9 6,4 7 8,6 11,1	330m 5 6,6 7,2 8,9 11,5	5,3 6,8 7,5 9,2 12,2	5,6 7,2 8,1 9,9 13,2	5,8 7,5 8,5 10,4 13,9	6 7,8 8,9 10,9 14,7	6,5 8,4 9,6 11,8 16,2	7 9,1 10,5 12,9 17,8	7,4 9,6 11,2 13,8 19,1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	30 32	4 4 5 6 7	850 990 1180 1250 1600 1710	4,5 5,8 6,1 7,5 9,6 11,1	4,7 6,1 6,5 7,9 10,2 11,8	4,9 6,4 7 8,6 11,1 12,9	330m 5 6,6 7,2 8,9 11,5 13,1	5,3 6,8 7,5 9,2 12,2 13,3	5,6 7,2 8,1 9,9 13,2 15,3	5,8 7,5 8,5 10,4 13,9 16	6 7,8 8,9 10,9 14,7 17	6,5 8,4 9,6 11,8 16,2 18,7	7 9,1 10,5 12,9 17,8 20,6	7,4 9,6 11,2 13,8 19,1 22,1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	30 32	4 4 5 6 7 4	850 990 1180 1250 1600 1710 1290	4,5 5,8 6,1 7,5 9,6 11,1 5,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9	4,9 6,4 7 8,6 11,1 12,9 6,2	330m 5 6,6 7,2 8,9 11,5 13,1 6,4	5,3 6,8 7,5 9,2 12,2 13,3 6,6	5,6 7,2 8,1 9,9 13,2 15,3 6,9	5,8 7,5 8,5 10,4 13,9 16 7,1	6 7,8 8,9 10,9 14,7 17 7,3	6,5 8,4 9,6 11,8 16,2 18,7 7,9	7 9,1 10,5 12,9 17,8 20,6 8,3	7,4 9,6 11,2 13,8 19,1 22,1 8,9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30 32 32	4 4 5 6 7 4 5 6	850 990 1180 1250 1600 1710 1290 1450 1750	4,5 5,8 6,1 7,5 9,6 11,1 5,7 7 8,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4	6 7,8 8,9 10,9 14,7 17 7,3 9 11,8	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30 32 32	4 4 5 6 7 4 5 6 7	850 990 1180 1250 1600 1710 1290 1450 1750 1920	4,5 5,8 6,1 7,5 9,6 11,1 5,7 7 8,7 10,1	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2	6 7,8 8,9 10,9 14,7 17 7,3 9 11,8 13,6	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30 32 32 34	4 4 5 6 7 4 5 6 7 7 7 7	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155	4,5 5,8 6,1 7,5 9,6 11,1 5,7 7 8,7 10,1 10,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5	6 7,8 8,9 10,9 14,7 17 7,3 9 11,8 13,6 15,1	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30 32 32 34	4 4 5 6 7 4 5 6 7 7 7 8	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315	4,5 5,8 6,1 7,5 9,6 11,1 5,7 7 8,7 10,1 10,7 12,1	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30 32 32 34 36	4 4 5 6 7 4 5 6 7 7 7 7 8 8 5	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315 1650	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	125	30 32 32 34 36 34	4 4 5 6 7 4 5 6 7 7 7 8 8 5 6	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315 1650 1820	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8
36 2600 10,8 11,2 12 12,3 12,7 13,5 14,1 14,7 15,4 16,2 17,2 34 35 1650 6,4 6,5 6,6 6,7 6,8 6,9 7,1 7,2 7 36 36 1820 7,5 7,7 7,8 8 8,4 8,6 8,9 9,3 9,6 9,3 9,3 9,6 9,3 9,3 9,6 10,5 10,5 10,7 10,5 10,7 7,7 7,7 7,8 8,8 8,4 8,6 8,9 9,3 9,6 9,8 9,1 9,3 9,6 9,8 9,1 9,3 9,6 9,8 9,9 10,2 10,5 10,7 11,9 10,5 11,1 11,4 11,9 11,5 11,7 11,9 12,6 13,5 14,1 11,7 11,7 11,7 11,7 11,7 11,7 11,7 11,7 11,7 11,7 11,7 </td <th>125</th> <td>30 32 32 34 36 34</td> <td>4 4 5 6 7 4 5 6 7 7 7 8 8 5 6 6 6</td> <td>850 990 1180 1250 1600 1710 1290 1450 1450 1920 2155 2315 1650 1820 2050</td> <td>4,5 5,8 6,1 7,5 9,6 11,1 5,7 7 8,7 10,1 10,1 10,7 12,1 6,5 7,7 8,1</td> <td>4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3</td> <td>4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7</td> <td>330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9</td> <td>5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1</td> <td>5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6</td> <td>5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10</td> <td>6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3</td> <td>6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7</td> <td>7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2</td> <td>7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8 11,8</td>	125	30 32 32 34 36 34	4 4 5 6 7 4 5 6 7 7 7 8 8 5 6 6 6	850 990 1180 1250 1600 1710 1290 1450 1450 1920 2155 2315 1650 1820 2050	4,5 5,8 6,1 7,5 9,6 11,1 5,7 7 8,7 10,1 10,1 10,7 12,1 6,5 7,7 8,1	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8 11,8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	125	30 32 32 34 36 34 36 34 36	4 4 5 6 7 4 5 6 7 7 7 8 8 5 6 6 6 7	850 990 1180 1250 1600 1710 1290 1450 1750 1920 22155 2315 1650 1820 2050 22150	4,5 5,8 6,1 7,5 9,6 11,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7 8,1 9,3	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3 9,6	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7 10	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9 1,2	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1 10,5	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6 11,1	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10 11,5	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3 11,9	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7 12,4	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2 13	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17, 19,3 22 9,1 10,8 11,8 13,7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	125	30 32 32 34 36 34 36 34 36	4 4 5 6 7 4 5 6 7 7 8 5 6 6 6 6 7 7 7 7	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315 1650 1820 2050 2150 2150	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7 8,1 9,3 9,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3 9,6 10,2	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7 10 10,6	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 1,6 14,2 7,1 8,4 8,9 1,2 10,9	5,3 6,8 7,5 9,2 12,2 13,3 12,2 13,3 10,3 12 13 14,8 7,3 8,6 9,1 10,5 11,2	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6 11,1 11,9	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10 11,5 12,4	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3 11,9 12,9	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7 12,4 13,5	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2 13 11,2	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17,1 19,3 22 9,1 10,8 11,8 13,7 5,1
36 7 2150 8,9 9,1 9,3 9,6 9,8 9,9 10,2 10,5 10,9 38 7 2450 9,3 9,5 9,8 10,1 10,3 10,5 11,1 11,4 11,9 38 8 2700 10 10,7 11 11,2 11,5 11,7 11,9 12,6 13,5	125	30 32 32 34 36 34 36 38	4 4 5 6 7 4 5 6 6 7 7 8 8 5 6 6 7 7 7 8 8 5 6 7 7 7 8 8 5 5	850 990 1180 1250 1600 1710 1290 1450 1750 2155 2315 1650 1820 2050 2050 2150 2400 2600	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7 8,1 9,3 9,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3 9,6 10,2	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7 8,7 10 10,6 12 6,4	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9 1,2 10,9 12,3	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1 10,5 11,2 12,7	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6 11,1 11,9 13,5	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10 11,5 12,4 14,1	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3 11,9 12,9 14,7	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7 12,4 13,5 15,4	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2 13 11,2 13 14,2 16,2	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8 11,8 11,8 13,7 5,1 17,2
160 7 2150 8,9 9,1 9,3 9,6 9,8 9,9 10,2 10,5 10,9 38 7 2450 9,3 9,5 9,8 10,1 10,3 10,5 11,1 11,4 11,9 38 8 2700 10,7 11,1 11,2 11,5 11,7 11,9 12,6 13,5	125	30 32 32 34 36 34 36 38	4 4 5 6 7 4 5 6 6 7 7 7 8 8 5 6 6 7 7 7 8 8 5 6 6 5 6	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315 1650 1820 2050 2150 2400 2600 1650 1820	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7 8,1 9,3 9,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3 9,6 10,2	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7 10 10,6 12 6,4 7,5	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9 1,2 10,9 1,2,3 6,5 7,7	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1 10,5 11,2 12,7 6,6 7,8	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6 11,1 11,9 13,5 6,7 8	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10 11,5 12,4 14,1 6,8 8,1	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3 11,9 12,9 14,7 6,9 8,2	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7 12,4 13,5 15,4 7,1 8,4	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2 13 11,2 13 14,2 16,2 7,2 8,6	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8 11,8 13,7 5,1 17,2 7 8,9
38 8 2700 10,7 11 11,2 11,5 11,7 11,9 12,6 13 13,5	125	30 32 32 34 36 34 36 38 38 34	4 4 5 6 7 4 5 6 7 7 8 8 5 6 6 6 7 7 7 8 8 5 6 6 6 6 6 6 6 6	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315 1650 1820 2050 2150 2400 2600 1650 1820	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7 8,1 9,3 9,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3 9,6 10,2	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7 10,6 12 6,4 7,5 7,8	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9 1,2 10,9 12,3 6,5 7,7 7,9	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1 10,5 11,2 12,7 6,6 7,8 8,1	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6 11,1 11,9 13,5 6,7 8 8,3	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10 11,5 12,4 14,1 6,8 8,1 8,4	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3 11,9 12,9 14,7 6,9 8,2 8,6	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7 12,4 13,5 15,4 7,1 8,4 9,1	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2 13 14,2 16,2 7,2 8,6 9,3	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8 11,8 13,7 5,1 17,2 7 8,9 9,6
	125	30 32 32 34 36 34 36 38 38 34	4 4 5 6 7 4 5 6 7 7 8 8 5 6 6 6 6 7 7 8 8 5 6 6 6 6 6 7	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315 1650 1820 2050 2150 2400 2600 1650 1820 1820	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7 8,1 9,3 9,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3 9,6 10,2	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7 10 10,6 12 6,4 7,5 7,8 8,9	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9 1,2 10,9 12,3 6,5 7,7 7,9 9,1	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1 10,5 11,2 12,7 6,6 7,8 8,1 9,3	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6 11,1 11,9 13,5 6,7 8 8,3 9,6	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10 11,5 12,4 14,1 6,8 8,1 14,1 6,8 8,1 8,4 9,8	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3 11,9 12,9 14,7 6,9 8,2 8,6 9,9	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7 12,4 13,5 15,4 7,1 8,4 9,1 10,2	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2 13 14,2 13 14,2 13 14,2 13 2,6 6 9,3 10,5	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8 11,8 13,7 5,1 5,1 5,7 7 8,9 9,6 10,9
40 8 2800 10,2 10,8 11,2 12 12,8 13,2 14 15 16,2	125	30 32 32 34 36 34 36 38 38 34 36	4 4 5 6 7 4 5 5 6 7 7 8 8 5 6 6 6 6 7 7 7 8 8 5 6 6 6 6 6 7 7 7 7	850 990 1180 1250 1600 1710 1290 1450 1750 1920 2155 2315 1650 1820 2050 2150 2600 1650 1820 2000 2150 2400 2500 2150 2400 2500 1650 1820 2000 2150 2450	4,5 5,8 6,1 7,5 9,6 111,1 5,7 7 8,7 10,1 10,7 12,1 6,5 7,7 8,1 9,3 9,7	4,7 6,1 6,5 7,9 10,2 11,8 5,9 7,3 9,2 10,6 11,5 12,9 6,7 7,9 8,3 9,6 10,2	4,9 6,4 7 8,6 11,1 12,9 6,2 7,7 9,8 11,3 12,2 13,8 6,9 8,2 8,7 10 10,6 12 6,4 7,5 7,8 8,9 9,3	330m 5 6,6 7,2 8,9 11,5 13,1 6,4 7,8 10 11,6 12,6 14,2 7,1 8,4 8,9 1,2 10,9 12,3 6,5 7,7 7,9 9,1 9,5	5,3 6,8 7,5 9,2 12,2 13,3 6,6 8 10,3 12 13 14,8 7,3 8,6 9,1 10,5 11,2 12,7 11,2 12,7 6,6 6,7,8 8,1 9,3 9,8	5,6 7,2 8,1 9,9 13,2 15,3 6,9 8,5 11 12,8 14 15,9 7,6 9 9,6 11,1 11,9 13,5 6,7 8 8,3 9,6 10,1	5,8 7,5 8,5 10,4 13,9 16 7,1 8,8 11,4 13,2 14,5 16,5 7,9 9,4 10 11,5 12,4 10 11,5 12,4 14,1 6,8 8,8,1 8,4 9,8 10,3	6 7,8 8,9 10,9 14,7 7,3 9 11,8 13,6 15,1 17,1 8,2 9,6 10,3 11,9 12,9 14,7 6,9 8,2 8,6 9,9 10,5	6,5 8,4 9,6 11,8 16,2 18,7 7,9 9,6 12,7 14,7 16,5 18,7 8,4 9,9 10,7 12,4 13,5 15,4 7,1 8,4 9,1 10,2 11,1	7 9,1 10,5 12,9 17,8 20,6 8,3 10,3 10,3 13,7 15,8 17,8 20,2 8,7 10,3 11,2 13 14,2 16,2 7,2 8,6 9,3 10,5 11,4	7,4 9,6 11,2 13,8 19,1 22,1 8,9 10,9 14,7 17 19,3 22 9,1 10,8 11,8 13,7 5,1 17,2 7 8,9 9,6 10,9 11,9

The table shows pressure and flow losses taking into account the water discharge resistance of a rigid, horizontal metal pipeline.

WATER	FLOW							NOMIN	AL DIAM	ETER in	mm and	inches							
m³/h	l/min	Loss pre 100 m	"15 1/2″"	"20 3/4″"	"25 1″"	"32 1 1/4″"	"40 1 1/2""	"50 2″"	"65 2 1/2″"	"80 3″"	"100 4″"	"125 5″"	"150 6″"	"175 7″"	"200 8″"	"250 10″"	"300 12″"	"350 14″"	"400 16″"
0,6	10		17,0	4,0	1,5	0,5	0,2												
0,9	15	1	34,8	8,4	2,9	0,9	0,3												
1,2	20		58,6	14,5	4,9	1,6	0,5	0,2											
1,5	25		89,0	22,0	7,5	2,4	0,8	0,3											
1,8	30		125,0	31,0	11,0	3,3	1,2	0,4											
2,1	35		166,1	40,0	14,3	4,3	1,5	0,5											
2,4	40			52,0	18,1	5,3	1,9	0,7	0,2										
3	50			78,5	27,0	8,0	2,8	0,9	0,3										
3,6	60			110,2	37,2	11,9	3,9	1,4	0,4										
4,2	70			145,8	50,0	15,1	5,1	1,8	0,5										
4,8	80			188,3	64,1	19,5	6,5	2,3	0,6										
5,4	90				78,2	24,1	8,0	2,8	0,8	0,3									
6	100				95,4	29,0	9,9	3,4	0,9	0,4									
7,5	125				144,0	44,1	15,0	5,0	1,5	0,5									
9	150					60,5	20,8	7,0	2,0	0,7	0,3								
10,5	175					81,0	27,5	9,5	2,7	1,0	0,4								
12	200					105	35,0	12,1	3,4	1,3	0,5								
15	250					155,5	52,8	18,0	5,0	1,9	0,6	0,20							
18	300						73,9	25,2	7,0	2,6	0,9	0,3							
24	400	head loss					125	42,1	11,9	4,5	1,5	0,5	0,2						
30	500	(m)					189	63,9	18,3	6,5	2,3	0,8	0,3						
36	600							89,5	25,0	9,5	3,3	1,2	0,5	0,2					
42	700							119,5	33,5	12,0	4,3	1,4	0,6	0,3					
48	800	_						153,2	42,5	15,5	5,3	1,8	0,8	0,4					
54	900	_						189,3	54,0	19,5	6,5	2,3	0,9	0,5					
60	1000								64,0	24,0	7,9	2,8	1,1	0,6	0,3				
75	1250								97,0	35,6	12,0	4,0	1,7	0,8	0,4				
90	1500								135,0	50,0	16,9	5,7	2,4	1,1	0,6				
105	1750								180,0	65,0	22,4	7,5	3,2	1,5	0,8				
120	2000									85,0	29,0	9,8	4,0	1,9	1,0	0,4			
150	2500									128,0	43,0	14,9	6,0	2,9	1,5	0,5			
180	3000										60,0	20,5	8,5	4,0	2,2	0,7	0,3		
210	3500										80,0	27,5	11,5	5,3	2,9	1,0	0,4		
240	4000									_	103,0	35,5	14,5	6,9	3,5	1,3	0,5		
300	5000											52,5	22,0	10,5	5,4	1,9	0,8		
360	6000											74,0	30,0	14,5	7,5	2,6	1,1		
420	7000												40,0	19,0	10,0	3,4	1,4	0,7	
480	8000												52,0	24,0	13,0	4,4	1,8	0,9	
540	9000	_											65,0	30,5	14,0	5,4	2,2	1,1	0,6
600	10000													37,0	19,0	6,5	2,7	1,3	0,7

	NOMINAL DIAMETER in mm and inches												
Component	"25 1″"	"32 1 1/4″"	"40 1 1/2″"	"50 2″"	"65 2 1/2″"	"80 3″"	"100 4″"	"125 5″"	"150 6″"		"200 8″"	"250 10″"	"300 12″"
Valve			0,3	0,3	0,3	0,6	0,6	0,9	1,2		1,5	1,8	
Non-return valve	1,5	2,1	2,7	3,3	4,2	4,8	6,6	8,3	10,4		13,5	16,5	19,5
45° elbow	0,3	0,3	0,6	0,6	0,9	0,9	1,2	1,5	2,1		2,7	3,3	3,9
90° elbow	0,6	0,9	1,2	1,5	1,8	2,1	3	3,6	4,2		5,4	3,6	8,1

Pressure loss / discharge resistance when using galvanized steel pipeline. Pressure losses along the 100 m horizontal section Pressure loss when using a different pipeline (ratio) Cast iron pipeline x 1.4 Stainless steel pipeline x 0.8 Aluminium pipeline x 0.7 PE / PVC pipeline x 0.65

Pressure systems

IBO products are a reference for quality and reliability in the pump sector in Poland.

Dambat offers a wide range of pressure systems, therefore we are able to deliver products that are perfectly adapted to customer requirements. IBO products can be adapted to virtually every household application and budget.

The selection of a product that is the most suitable for a given application depends on many factors, including:

- What is the water demand (flow in l/min. or m³/h)? The demand will largely depend on the number of taps or pressure points that can be used simultaneously.
- What is the pressure demand?

Due to losses during pumping through both vertical and horizontal sections of the pipeline, as well as during supplying water at a certain pressure to higher floors or in larger systems, the demand for pressure generated by the pump will be greater than in case of single-family houses and small systems.

A simple diagram to assist in the selection of suitable pumps is presented below. It takes into account flow and pressure demand depending on the size of the building and the number of water usage points.

Diagram for selecting device parameters

Sewage pumps

Dambat offers a wide range of submersible pumps for individual, commercial, agricultural and industrial applications. IBO pumps are reliable devices monitored at every stage of manufacturing process, made of robust materials, which results in increased durability compared to competing products.

in order to make the installation of devices and their operation easy and faultless, Dambat offers a wide range of devices with various parameters and features suitable for different systems. Selected single-phase pumps are available with and without a float switch. Some sewage pumps can be installed with a guide rail system.

	Type of impurities:	Pump type	Pumps for clean water	Pumps for slightly contaminated water (swimming pool, rainwater, drainage of flooded rooms)	Pumps for dirty water contaminated with solids of up to 30 mm diameter. (swimming pool, rainwater, drainage of flooded rooms)	Pumps for dirty water contaminated with solids with diameter from 30 mm to 50 mm (slurry, liquid waste, sewage)	Pumps with cutting system for domestic raw sewage (liquid waste, sewage)	Pumps for agricultural and industrial for raw sewage (slurry, liquid waste, sewage)	Pumps for dewatering and drainage (drainage ditches, construction sites, mines, tanks containing sand or sludge)	Pump for slurry contaminated with solids (raw sewage, tanks with sediments)
	Water from wells, rivers, lakes	MULTI, IP, NEMO	\checkmark	٥	٥	٥	٥	٥	٥	٥
	Rainwater	ip, ipe, ipk, ip inox, H-SWQ, ipc	V	\checkmark	٥	٥	٥	٥	٥	\$
	Drainage/ dewatering.	WQX, SWQ PRO, SWQ, F-SWQ, 25-KBFU-0,45	V	\checkmark	٥	٥	٥	٥	٥	<u> </u>
	Dirty water Liquid waste	SN-450, MAGNUM, WQF	\checkmark	\checkmark	\checkmark	٥	٥	٥	٥	<u> </u>
RODZAJ ZASTOSOWANIA		WQ PRO, SWQ SEPTIC, BIG, WQ PROFESIONAL	\checkmark	\checkmark	\checkmark	\checkmark	٥	٥	٥	<u> </u>
	Faecal matter Drainage/	CTR, FURIATKA, V, WQI, SWQ1300, SWQ2200	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	٥	٥	<u> </u>
	dewatering	KRAKEN, UP, UP-H, ZWQ	V	\checkmark	V	\checkmark	\checkmark	\checkmark	٥	<u> </u>
		KBFU	\checkmark	\checkmark	\checkmark	٥	٥	٥	\checkmark	٥
	Sediments Slurry	MWQ	\checkmark	\checkmark	\checkmark	\checkmark	٥	٥	٥	\checkmark

Useful information

If you need assistance in selecting a pump, please check the data below and contact us.

Most of our distributors are professional companies operating in the pumping sector and having proper knowledge in scope of the selection of pumping devices and equipment. However, if you have difficulties is selecting the right device, please answer the following questions and contact us, our technical advisers will try to find a product that suits your requirements.

Please answer the following questions

1. What will the pump be used for?

- Increasing system pressure
- Garden watering/sprinklers
- Irrigation
- Heating systems
- Sewer system/liquid waste
- Dewatering/drainage
- Water transfer
- Firewater systems
 - Other (please specify)

2. Required operating pressure at specified flow Bar

- 3. Required flow at specified pressure I/min or
- 4. What is the planned or existing water intake?
- Deep well
- Ring well
- Suction pit
- Instalacje
- Rainwater tank (foldable)
- River, stream, canal
- Lake
- Water supply system
- Excavations
 - Other (please specify)

5. Water type

- Clean water
- Dirty water
- Water with sand
- Sewage/liquid waste
 - Other (please specify)

6. Deep well

Internal diameter of the well pipe (mm)
At what depth is the water surface? (m)
Well output (we recommend to carry out survey) (l/min)
Horizontal distance of the well to the pressure tank(m)
Level difference between the well opening and the destination point (m)
7. Ring well
At what depth is the water surface? (m)
Well output (we recommend to carry out survey) (I/min)
Horizontal distance of the well to the pressure tank (m)

Level difference between the well opening and the destination point (m)

7. Lake

- Horizontal distance from the well to the pressure tank (m)
- Level difference between the well opening and the destination point (m)

8. What is the pipeline made of?

- Galvanized
- PCV / PE
- Stainless steel/copper
- Discharge hose

 - Other (please specify)

9. Discharge pipe diameter (mm)

10. Required power source?

- Electric motor (230V)
- Electric motor (400V)
- Electric motor (12V)
- Internal combustion engine
- Piston (hand) pump
- PTO shaft

 - Other (please specify)

11. Is a pressure tank required? If yes, please specify what type.

- □ 24 □ 150 □ 500
- □ 50 □ 200 □ 1000
 - 100 . 300

12. Is control required? If yes, please specify what type.

Frequency converter

- Pressure switch
- Automatic flow switch
- Protection
 - Other (please specify)

PRZELICZNIKI 🏼 🌀

Sample water demand depending on application is shown below.

It should be taken into consideration that the demand may differ depending on the economic and geographical development, therefore the data presented below should be used for informative purposes to assist in the selection of the device. In order to pump water from intakes with surface pumps, negative pressure (so-called suction) is required.

In order to assist in the selection of the device, the factors that affect the suction height are presented below:

- Altitude: atmospheric pressure decreases with increasing altitude.
- Flow: the higher the flow rate through the pump, the lower the negative pressure created by the pump.
- Water temperature: the higher the water temperature, the lower the suction capacity.
- · Losses: not only the vertical section on which the water surface is located but also the horizontal section should be taken into account.

The height above sea level at which the pump operates is also very important.

HOUSEHOLD	HOUSEHOLD
Shower: 8-10 l/m. at 1.4 bar	Cattle: 30-55 litres / day
Small lawn sprinkler: 15-20 l/m. at 1.4 bar	Dairy cows: 30-55 litres / day
1/2" tap: 12-18 l/m. at 1.4 bar	Sheep: 30-55 litres / day
3/4" hose + 1/4" nozzle: 40-50 l/m. at 2.1 bar	Pigs: 30-55 litres / day
1" hose + 3/8" nozzle: 70-90 l/m. at 2.1 bar	Pigs: 30-55 litres / day Horses: 30-55 litres / day

WATER TEMPERATURE (° C)	HEAD LOSSES (m)
15	0
20	0,06
30	0,22
40	0,52
50	0,98
60	1,73
70	2,85
80	4,51

LENGHT									
cale	stopy	cm							
1,00	0,08	2,54							
12,00	1,00	30,48							
36,00	3,00	91,44							
39,37	3,28	100,00							

FLOW									
l/min	l/sek	m³/h							
10	0,17	0,60							
16,7	0,28	1							
60	1	3,60							

VOLUME UNITS									
litre	m³	gallon							
1	0,001	0,22							
1000	1	220							
4,546	0,0045	1							

PRESSURE					
т	kPa	bar	psi		
1	9,81	0,10	1,42		
10	98,1	0,98	14,2		
10,2	100	1	14,5		
70,4	690,8	6,9	100		
101,9	999,6	10	144,7		

LEVEL	SUCTION CAPACITY	VOL	UME
Sea level	6,7 m	litr	m³
500m	6,1 m	1	0
700m	5,8 m	1000	1
1000m	5,5 m	40,546	0,0045
1500m	5,0 m	30,785	0,0038
2000m	4,5 m	280,32	0,0283

VISIT YOUTUBE TO WATCH OUR PRODUCTS IN ACTION: IBO PUMPS

🕒 Premium 🖻

🕒 Premium 🖻

180 Pompy

🔁 Premium 🖺

CIBO IBO Pompy

180 Pompy

IBO PRODUCTS ARE ALSO APPROVED FOR SALE ON THE EUROASIAN CUSTOMS UNION MARKETS: Таможенный союзЕАЭС

1000	CEPTHONKAT CONTRETETENS	B	ПРИЛОЖЕНИЕ	
103	N= EATHC RU C-PLAXK40.B.00801/20		К СЕРТИФИКАТУ СООТВЕТСТВИЯ № ЕАЭС RU C-PL.A%40.B.00801/2 Ссрия RU № 0711449	
LIIL	Серня RU № 0226971	2		
ОРГАН ПО СЕРТИИ	рикации Орган по сертификации Общества с ограниченной ответственностью «СамараТест»	1	Перечень продукцан, на которую распространяется действие сертификата соответствия	
Место накождения (адрес 1 Адрес места осуществлени Урацеото, дом 19, комната Аттестат аккредитации №	opparatesciora aniaj. 44300, POCCHB, Canapesta obsects, ropos Canapa, yania Zpelinoro, jou 19 in generancesci y 45000, POCCHB, Canapesta obsects, Kararinostepasinali pakon, ropos Casiapi, yania 4 55, 66, 59. R. RU, 11 (AR40) epos actification o 02.00.2017	Ken (senas) TH B'ALTC	Наиченование, типы, мария, модели пролукции, составные части изделня или комплекса	Оботначения документации, о которой выпускает продукция
ЗАЯВИТЕЛЬ ОБЩЕС Место накождения (адрес) город Бринск, микрорайон	2 Адрес засепронной октис: ибод запаганет по ТВО СО ОТАЧНИЦИИСЯ ОТИСТСТВНИКОСТЬЮ "ТПК" органоватор наза, в дере честа одгазования литетизисте 20103, Россия, область Бринския, Массинский, Дон 45, Карартар, 172 Аректранования марет 1122/2005/97.	8413702100, 8413702900, 8413703000, 8413705100	Оборудование населене потружные поседы этостроготрумные насели глубовные, населы интерсивертные, насельне ставшин цариулицичные настоя	Дврективы 2014/35/1 «Нисковольтное оборудование», 2014/30/EU «Электромагнятная совмествоость»
Телефон: 79587568233 А.р. ИЗГОТОВИТЕЛЬ Р Место пакожления (Алекс	pec sneetpoussoit noverse: 2017tabloitgenail.com	XXX	Hassesa norpsanae copini (initia) IP, JP INOX, IPK, IPC, MULTI P, MULTI, IPE SN, CTR, V, BIG, MAGNUM, FURIATKA, FURIA, KRAKEN, WOY, WO, WOX, WOK, MWO, ZHOU, WOL SWO, J-SWO, J-SWO, SWO, SWO, H. SWO SETTC, 25KIPU, 96KIPU, 96KBPJ, 100KBPJ, KBPU, VIPER, FON, HUNTIR, DE, Stor, IVP, Areau	
ПРОДУКЦИЯ Оборуд выхосные статыви народа Дародствами 2014-35 EU о Серийный выпуск	ование насколог запуравни наскога, изатрепотрукаци наског пъртивна, наскат водрама таки, наската наској порадно продоколо (до 14 м ² 11 140). Продека и отгорала и отгорала и консестота с насказа наско середокање, од 16 00 11 г. Такруман не в селетичество на порадни селети се продокање, од 16 00 11 г. Такруман не в селетичество		³ Interpotence improvemer regionance, cipnet (image: OK, A, NISO, YM, RUSSIA, AM, STING, STING, STING, SHOR, SHORD, SHORD, SHORD, SHORD, 40(B), 24(B), 24(B), 27(B), 27(T), 54(T, 54(C, 55(T), 35(T), 65(T)), 40(B), 24(B), 24(D), 27(T), 54(T, 54(C, 55(T), 35(T), 65(T)), 17(B), 27(B), 27(B), 27(B), 27(B), 27(B), 27(B), 28(T), 28(T), 28(T), 27(B), 28(T), 28(T), 28(T), 28(T), 28(T), 28(T), 28(T), 28(T), 28(T), 28(T), 28	
COOTBETCTBYET	 Ball 30 (2010), 441170 (2010), 44117 39 (100, 44117 39 (2000) PERFORMEDURE Transmission of the 12 foreinspectrum resonance and oppositions of (107 (2012)(1)) Transmission of the 12 foreinspectrum resonance in the strain resonance opposition (107 (2012)(1)) 		Heices romeposeemae, egune (rmma: A), PT, JAT 100, PT (000, PT	
1085/ИЛНВО, 1086/ИЛНВО ответственностью "ПРОМ акта авализа состояния пр ответственностью «Самар Схема сертификации: 1с	A DEFINITION OF THE ADDALLED TO THE ADDALLED T	VAN Y VAN Y VAN		
Бетописность Часть 1 Об Бетописность Часть 2-41 заногроманитика Эмикогу адной факе). Нормы и мето СРОК ДЕЙСТВИЯ С ВКЛЮЧИТЕЛЬНО Руководитал лящо) органа	циет требоновот, ГОСТ IEE (80335-241-2015 "Пагочане в шакатотовые экстротокские приборы. Чеспасе требоновот к искосат, ГОСТ 100463-2-2017, Совекствность и столических средства. и провытерских составляющих това технитерсково средствание с вотребляения током на более 16 А св ода псилатаний. ГОСТ 10041-3-2013 "Совокствность и технических средств экстромания".	лицо) ор	тана по сертификации	ор Панел Александронн 2001 9 Дания Владимирони

SPARE PARTS

Full catalogue of spare parts for all IBO products can be found on **dambat.pl**, under "**download**; **spare parts**" tab. In case of any problems in finding a proper part, please contact our service centre.

MULT 11300 INOX PUMP DIAGRAM © COPYRIGHT DAMBAT

To place your purchase order, please call or e-email our sales department. Contact details can be found on the next page (cover).

Product parameters shown in this document result from laboratory testing.
 Operating parameters may vary by +/-10%.
 The weight and dimensions of the products may vary depending on the production batch.

(i) The manufacturer reserves the right to make changes to the devices offered in the catalogue without prior notice. Changes may include: parameters, dimensions, appearance or names.

This catalogue does not constitute an offer pursuant to trade law. For full offer and price list, please contact our Sales Department.

CONTACT

PHU DAMBAT

Gawartowa Wola 38 05-085 Kampinos NIP (Tax ID No.): 525-148-32-40

SALES

Pass 21, Hala D 05-870 Błonie **OPENING HOURS:** Mon-Fri: 8 am - 4 pm

TEL: +48 22 721 11 92 **TEL:** +48 22 721 02 17 **EMAIL:** biuro@dambat.pl

MAGAZYN PRODUKTÓW GOTOWYCH

Pass 21, Hala B 05-870 Błonie

SERWIS

Pass 21, Hala B 05-870 Błonie **TEL:** +48 22 632 86 09 **EMAIL:** serwis@dambat.pl

This document may not be reproduced, processed or transmitted in any form, in whole or in part, by any electronic, mechanical, copying, recording or other devices, and may not be stored in any IT system without the prior written consent of PHU Dambat.

© Copyright PHU Dambat All Rights Reserved

WWW.DAMBAT.PL

WWW.IBOITALY.PL